Isotropic and anisotropic a posteriori error estimation of the mixed finite element method for second order operators in divergence form
Electronic transactions on numerical analysis, Tome 23 (2006), pp. 38-62.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: This paper presents an a posteriori residual error estimator for the mixed FEM of second order operators using isotropic or anisotropic meshes in , or . The reliability and efficiency of our estimator is $\sterling $#############$\ddot $§$\copyright $ established without any regularity assumptions on the solution of our problem.
Classification : 65N15, 65N30
Keywords: error estimator, stretched elements, mixed FEM, anisotropic solution
@article{ETNA_2006__23__a16,
     author = {Nicaise, Serge and Creus\'e, Emmanuel},
     title = {Isotropic and anisotropic a posteriori error estimation of the mixed finite element method for second order operators in divergence form},
     journal = {Electronic transactions on numerical analysis},
     pages = {38--62},
     publisher = {mathdoc},
     volume = {23},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2006__23__a16/}
}
TY  - JOUR
AU  - Nicaise, Serge
AU  - Creusé, Emmanuel
TI  - Isotropic and anisotropic a posteriori error estimation of the mixed finite element method for second order operators in divergence form
JO  - Electronic transactions on numerical analysis
PY  - 2006
SP  - 38
EP  - 62
VL  - 23
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2006__23__a16/
LA  - en
ID  - ETNA_2006__23__a16
ER  - 
%0 Journal Article
%A Nicaise, Serge
%A Creusé, Emmanuel
%T Isotropic and anisotropic a posteriori error estimation of the mixed finite element method for second order operators in divergence form
%J Electronic transactions on numerical analysis
%D 2006
%P 38-62
%V 23
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2006__23__a16/
%G en
%F ETNA_2006__23__a16
Nicaise, Serge; Creusé, Emmanuel. Isotropic and anisotropic a posteriori error estimation of the mixed finite element method for second order operators in divergence form. Electronic transactions on numerical analysis, Tome 23 (2006), pp. 38-62. http://geodesic.mathdoc.fr/item/ETNA_2006__23__a16/