On the reduction of a Hamiltonian matrix to Hamiltonian Schur form
Electronic transactions on numerical analysis, Tome 23 (2006), pp. 141-157.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Recently Chu, Liu, and Mehrmann developed an structure preserving method for computing $\textcent $###$\sterling $########$\ddot $§$\copyright $the Hamiltonian real Schur form of a Hamiltonian matrix. This paper outlines an alternative derivation of the method and an alternative explanation of why the method works. Our approach places emphasis eigenvalue swapping and relies less on matrix manipulations.
Classification : 65F15, 15A18, 93B40
Keywords: Hamiltonian matrix, skew-Hamiltonian matrix, stable invariant subspace, real Schur form
@article{ETNA_2006__23__a10,
     author = {Watkins, David S.},
     title = {On the reduction of a {Hamiltonian} matrix to {Hamiltonian} {Schur} form},
     journal = {Electronic transactions on numerical analysis},
     pages = {141--157},
     publisher = {mathdoc},
     volume = {23},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2006__23__a10/}
}
TY  - JOUR
AU  - Watkins, David S.
TI  - On the reduction of a Hamiltonian matrix to Hamiltonian Schur form
JO  - Electronic transactions on numerical analysis
PY  - 2006
SP  - 141
EP  - 157
VL  - 23
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2006__23__a10/
LA  - en
ID  - ETNA_2006__23__a10
ER  - 
%0 Journal Article
%A Watkins, David S.
%T On the reduction of a Hamiltonian matrix to Hamiltonian Schur form
%J Electronic transactions on numerical analysis
%D 2006
%P 141-157
%V 23
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2006__23__a10/
%G en
%F ETNA_2006__23__a10
Watkins, David S. On the reduction of a Hamiltonian matrix to Hamiltonian Schur form. Electronic transactions on numerical analysis, Tome 23 (2006), pp. 141-157. http://geodesic.mathdoc.fr/item/ETNA_2006__23__a10/