Preconditioners for saddle point linear systems with highly singular $(1,1)$ blocks
Electronic transactions on numerical analysis, Tome 22 (2006), pp. 114-121.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We introduce a new preconditioning technique for the iterative solution of saddle point linear systems with (1,1) blocks that have a high nullity. The preconditioners are block diagonal and are based on augmentation, using symmetric positive definite weight matrices. If the nullity is equal to the number of constraints, the preconditioned matrices have precisely two distinct eigenvalues, giving rise to immediate convergence of preconditioned MINRES. Numerical examples illustrate our analytical findings.
Classification : 65F10
Keywords: saddle point linear systems, high nullity, augmentation, block diagonal preconditioners, Krylov subspace iterative solvers
@article{ETNA_2006__22__a3,
     author = {Greif, Chen and Sch\"otzau, Dominik},
     title = {Preconditioners for saddle point linear systems with highly singular $(1,1)$ blocks},
     journal = {Electronic transactions on numerical analysis},
     pages = {114--121},
     publisher = {mathdoc},
     volume = {22},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2006__22__a3/}
}
TY  - JOUR
AU  - Greif, Chen
AU  - Schötzau, Dominik
TI  - Preconditioners for saddle point linear systems with highly singular $(1,1)$ blocks
JO  - Electronic transactions on numerical analysis
PY  - 2006
SP  - 114
EP  - 121
VL  - 22
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2006__22__a3/
LA  - en
ID  - ETNA_2006__22__a3
ER  - 
%0 Journal Article
%A Greif, Chen
%A Schötzau, Dominik
%T Preconditioners for saddle point linear systems with highly singular $(1,1)$ blocks
%J Electronic transactions on numerical analysis
%D 2006
%P 114-121
%V 22
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2006__22__a3/
%G en
%F ETNA_2006__22__a3
Greif, Chen; Schötzau, Dominik. Preconditioners for saddle point linear systems with highly singular $(1,1)$ blocks. Electronic transactions on numerical analysis, Tome 22 (2006), pp. 114-121. http://geodesic.mathdoc.fr/item/ETNA_2006__22__a3/