Krylov subspace spectral methods for variable-coefficient initial-boundary value problems
Electronic transactions on numerical analysis, Tome 20 (2005), pp. 212-234.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: This paper presents an alternative approach to the solution of diffusion problems in the variablecoefficient case that leads to a new numerical method, called a Krylov subspace spectral method. The basic idea behind the method is to use Gaussian quadrature in the spectral domain to compute components of the solution, rather than in the spatial domain as in traditional spectral methods. For each component, a different approximation of the solution operator by a restriction to a low-dimensional Krylov subspace is employed, and each approximation is optimal in some sense for computing the corresponding component. This strategy allows accurate resolution of all desired frequency components without having to resort to smoothing techniques to ensure stability.
Classification : 65M12, 65M70, 65D32
Keywords: spectral methods, Gaussian quadrature, variable-coefficient, Lanczos method
@article{ETNA_2005__20__a2,
     author = {Lambers, James V.},
     title = {Krylov subspace spectral methods for variable-coefficient initial-boundary value problems},
     journal = {Electronic transactions on numerical analysis},
     pages = {212--234},
     publisher = {mathdoc},
     volume = {20},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2005__20__a2/}
}
TY  - JOUR
AU  - Lambers, James V.
TI  - Krylov subspace spectral methods for variable-coefficient initial-boundary value problems
JO  - Electronic transactions on numerical analysis
PY  - 2005
SP  - 212
EP  - 234
VL  - 20
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2005__20__a2/
LA  - en
ID  - ETNA_2005__20__a2
ER  - 
%0 Journal Article
%A Lambers, James V.
%T Krylov subspace spectral methods for variable-coefficient initial-boundary value problems
%J Electronic transactions on numerical analysis
%D 2005
%P 212-234
%V 20
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2005__20__a2/
%G en
%F ETNA_2005__20__a2
Lambers, James V. Krylov subspace spectral methods for variable-coefficient initial-boundary value problems. Electronic transactions on numerical analysis, Tome 20 (2005), pp. 212-234. http://geodesic.mathdoc.fr/item/ETNA_2005__20__a2/