Orthogonality of Jacobi polynomials with general parameters
Electronic transactions on numerical analysis, Tome 19 (2005), pp. 1-17.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper we study the orthogonality conditions satisfied by Jacobi polynomials when the $$###$$ parameters and are not necessarily . We establish orthogonality on a generic closed contour on a Riemann surface. Depending on the parameters, this leads to either full orthogonality conditions on a single contour in the plane, or to multiple orthogonality conditions on a number of contours in the plane. In all cases we show that the $$###$$§$$###$\copyright \ddot $ orthogonality conditions characterize the Jacobi polynomial of degree up to a constant factor.$$
Classification : 33C45
Keywords: Jacobi polynomials, orthogonality, rodrigues formula, zeros
@article{ETNA_2005__19__a9,
     author = {Kuijlaars, A.B.J. and Martinez-Finkelshtein, A. and Orive, R.},
     title = {Orthogonality of {Jacobi} polynomials with general parameters},
     journal = {Electronic transactions on numerical analysis},
     pages = {1--17},
     publisher = {mathdoc},
     volume = {19},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2005__19__a9/}
}
TY  - JOUR
AU  - Kuijlaars, A.B.J.
AU  - Martinez-Finkelshtein, A.
AU  - Orive, R.
TI  - Orthogonality of Jacobi polynomials with general parameters
JO  - Electronic transactions on numerical analysis
PY  - 2005
SP  - 1
EP  - 17
VL  - 19
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2005__19__a9/
LA  - en
ID  - ETNA_2005__19__a9
ER  - 
%0 Journal Article
%A Kuijlaars, A.B.J.
%A Martinez-Finkelshtein, A.
%A Orive, R.
%T Orthogonality of Jacobi polynomials with general parameters
%J Electronic transactions on numerical analysis
%D 2005
%P 1-17
%V 19
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2005__19__a9/
%G en
%F ETNA_2005__19__a9
Kuijlaars, A.B.J.; Martinez-Finkelshtein, A.; Orive, R. Orthogonality of Jacobi polynomials with general parameters. Electronic transactions on numerical analysis, Tome 19 (2005), pp. 1-17. http://geodesic.mathdoc.fr/item/ETNA_2005__19__a9/