An electrostatic interpretation of the zeros of the Freud-type orthogonal polynomials
Electronic transactions on numerical analysis, Tome 19 (2005), pp. 37-47.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Polynomials orthogonal with respect to a perturbation of the Freud weight function by the addition of a mass point at zero are considered. These polynomials, called Freud-type orthogonal polynomials, satisfy a second order linear differential equation with varying polynomial coefficients. It plays an important role in the electrostatic interpretation for the distribution of zeros of the corresponding orthogonal polynomials.
Classification : 33C45, 42C05
Keywords: freud weights, orthogonal polynomials, zeros, potential theory, semiclassical linear functional
@article{ETNA_2005__19__a6,
     author = {Garrido, A. and Arves\'u, J. and Marcell\'an, F.},
     title = {An electrostatic interpretation of the zeros of the {Freud-type} orthogonal polynomials},
     journal = {Electronic transactions on numerical analysis},
     pages = {37--47},
     publisher = {mathdoc},
     volume = {19},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2005__19__a6/}
}
TY  - JOUR
AU  - Garrido, A.
AU  - Arvesú, J.
AU  - Marcellán, F.
TI  - An electrostatic interpretation of the zeros of the Freud-type orthogonal polynomials
JO  - Electronic transactions on numerical analysis
PY  - 2005
SP  - 37
EP  - 47
VL  - 19
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2005__19__a6/
LA  - en
ID  - ETNA_2005__19__a6
ER  - 
%0 Journal Article
%A Garrido, A.
%A Arvesú, J.
%A Marcellán, F.
%T An electrostatic interpretation of the zeros of the Freud-type orthogonal polynomials
%J Electronic transactions on numerical analysis
%D 2005
%P 37-47
%V 19
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2005__19__a6/
%G en
%F ETNA_2005__19__a6
Garrido, A.; Arvesú, J.; Marcellán, F. An electrostatic interpretation of the zeros of the Freud-type orthogonal polynomials. Electronic transactions on numerical analysis, Tome 19 (2005), pp. 37-47. http://geodesic.mathdoc.fr/item/ETNA_2005__19__a6/