Orthogonal Laurent polynomials and quadratures on the unit circle and the real half-line
Electronic transactions on numerical analysis, Tome 19 (2005), pp. 113-134.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The purpose of this paper is the computation of quadrature formulas based on Laurent polynomials in two particular situations: the Real Half-Line and the Unit Circle. Comparative results and a connection with the split Levinson algorithm are established. Illustrative numerical examples are approximate integrals of the form 1 f (x) $\omega (x)$ dx , r = 1, 2, 3, . . .
Classification : 41A55, 33C45, 65D30
Keywords: orthogonal Laurent polynomials, L-Gaussian quadrature, szeg $\ddot o$ quadrature, three-term recurrence relations, split levinson algorithm, numerical quadrature
@article{ETNA_2005__19__a0,
     author = {Cruz-Barroso, Ruym\'an and Gonz\'alez-Vera, Pablo},
     title = {Orthogonal {Laurent} polynomials and quadratures on the unit circle and the real half-line},
     journal = {Electronic transactions on numerical analysis},
     pages = {113--134},
     publisher = {mathdoc},
     volume = {19},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2005__19__a0/}
}
TY  - JOUR
AU  - Cruz-Barroso, Ruymán
AU  - González-Vera, Pablo
TI  - Orthogonal Laurent polynomials and quadratures on the unit circle and the real half-line
JO  - Electronic transactions on numerical analysis
PY  - 2005
SP  - 113
EP  - 134
VL  - 19
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2005__19__a0/
LA  - en
ID  - ETNA_2005__19__a0
ER  - 
%0 Journal Article
%A Cruz-Barroso, Ruymán
%A González-Vera, Pablo
%T Orthogonal Laurent polynomials and quadratures on the unit circle and the real half-line
%J Electronic transactions on numerical analysis
%D 2005
%P 113-134
%V 19
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2005__19__a0/
%G en
%F ETNA_2005__19__a0
Cruz-Barroso, Ruymán; González-Vera, Pablo. Orthogonal Laurent polynomials and quadratures on the unit circle and the real half-line. Electronic transactions on numerical analysis, Tome 19 (2005), pp. 113-134. http://geodesic.mathdoc.fr/item/ETNA_2005__19__a0/