On Hermite interpolation in $R_d$
Electronic transactions on numerical analysis, Tome 18 (2004), pp. 65-72.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this article, we deal with the problem of "Minimal Hermite Interpolation." That is, given a number k of distinct points in Rd and the values of several derivatives at this point, we want to find a subspace of minimal dimension, where this interpolation problem has a solution, independent of the choice of points. In Section 2, we present some results on such subspaces in the particular cases of two points and some or all partial derivatives of the first order. In Section 3, we obtain some general upper bounds on the dimension of interpolation subspaces.
Classification : 41A05, 41A63, 65D05
Keywords: Hermite interpolation, Lagrange interpolation
@article{ETNA_2004__18__a9,
     author = {Shekhtman, Boris},
     title = {On {Hermite} interpolation in $R_d$},
     journal = {Electronic transactions on numerical analysis},
     pages = {65--72},
     publisher = {mathdoc},
     volume = {18},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2004__18__a9/}
}
TY  - JOUR
AU  - Shekhtman, Boris
TI  - On Hermite interpolation in $R_d$
JO  - Electronic transactions on numerical analysis
PY  - 2004
SP  - 65
EP  - 72
VL  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2004__18__a9/
LA  - en
ID  - ETNA_2004__18__a9
ER  - 
%0 Journal Article
%A Shekhtman, Boris
%T On Hermite interpolation in $R_d$
%J Electronic transactions on numerical analysis
%D 2004
%P 65-72
%V 18
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2004__18__a9/
%G en
%F ETNA_2004__18__a9
Shekhtman, Boris. On Hermite interpolation in $R_d$. Electronic transactions on numerical analysis, Tome 18 (2004), pp. 65-72. http://geodesic.mathdoc.fr/item/ETNA_2004__18__a9/