Asymptotic lower bounds for eigenvalues by nonconforming finite element methods
Electronic transactions on numerical analysis, Tome 17 (2004), pp. 93-101.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We analyze the approximation obtained for the eigenvalues of the Laplace operator by the nonconforming piecewise linear finite element of Crouzeix-Raviart. For singular eigenfunctions, as those arising in nonconvex polygons, we prove that the eigenvalues obtained with this method give lower bounds of the exact eigenvalues when the mesh size is small enough.
Classification : 65N25, 65N30
Keywords: finite elements, eigenvalue problems, nonconforming methods
@article{ETNA_2004__17__a9,
     author = {Armentano, Mar{\'\i}a G. and Dur\'an, Ricardo G.},
     title = {Asymptotic lower bounds for eigenvalues by nonconforming finite element methods},
     journal = {Electronic transactions on numerical analysis},
     pages = {93--101},
     publisher = {mathdoc},
     volume = {17},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2004__17__a9/}
}
TY  - JOUR
AU  - Armentano, María G.
AU  - Durán, Ricardo G.
TI  - Asymptotic lower bounds for eigenvalues by nonconforming finite element methods
JO  - Electronic transactions on numerical analysis
PY  - 2004
SP  - 93
EP  - 101
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2004__17__a9/
LA  - en
ID  - ETNA_2004__17__a9
ER  - 
%0 Journal Article
%A Armentano, María G.
%A Durán, Ricardo G.
%T Asymptotic lower bounds for eigenvalues by nonconforming finite element methods
%J Electronic transactions on numerical analysis
%D 2004
%P 93-101
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2004__17__a9/
%G en
%F ETNA_2004__17__a9
Armentano, María G.; Durán, Ricardo G. Asymptotic lower bounds for eigenvalues by nonconforming finite element methods. Electronic transactions on numerical analysis, Tome 17 (2004), pp. 93-101. http://geodesic.mathdoc.fr/item/ETNA_2004__17__a9/