Convergence of $V$-cycle and $F$-cycle multigrid methods for the biharmonic problem using the Morley element
Electronic transactions on numerical analysis, Tome 17 (2004), pp. 112-132.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Multigrid V-cycle and F-cycle algorithms for the biharmonic problem using the Morley element are studied in this paper. We show that the contraction numbers can be uniformly improved by increasing the number of smoothing steps.
Classification : 65N55, 65N30
Keywords: multigrid, nonconforming, V-cycle, F-cycle, biharmonic problem, morley element
@article{ETNA_2004__17__a7,
     author = {Zhao, Jie},
     title = {Convergence of $V$-cycle and $F$-cycle multigrid methods for the biharmonic problem using the {Morley} element},
     journal = {Electronic transactions on numerical analysis},
     pages = {112--132},
     publisher = {mathdoc},
     volume = {17},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2004__17__a7/}
}
TY  - JOUR
AU  - Zhao, Jie
TI  - Convergence of $V$-cycle and $F$-cycle multigrid methods for the biharmonic problem using the Morley element
JO  - Electronic transactions on numerical analysis
PY  - 2004
SP  - 112
EP  - 132
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2004__17__a7/
LA  - en
ID  - ETNA_2004__17__a7
ER  - 
%0 Journal Article
%A Zhao, Jie
%T Convergence of $V$-cycle and $F$-cycle multigrid methods for the biharmonic problem using the Morley element
%J Electronic transactions on numerical analysis
%D 2004
%P 112-132
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2004__17__a7/
%G en
%F ETNA_2004__17__a7
Zhao, Jie. Convergence of $V$-cycle and $F$-cycle multigrid methods for the biharmonic problem using the Morley element. Electronic transactions on numerical analysis, Tome 17 (2004), pp. 112-132. http://geodesic.mathdoc.fr/item/ETNA_2004__17__a7/