On the estimation of the $q$-numerical range of monic matrix polynomials
Electronic transactions on numerical analysis, Tome 17 (2004), pp. 1-10.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: For a given the -numerical range of an matrix polynomial $\sterling $########$${\S}$$###$ \ddot \copyright \copyright \sterling "!#\\%('0)1#\243 5 5 5ED is defined by 276@8 # 3BACAAC3 #"3 FG!$ H%I'QPR#S$$###$$UTWVYXa`b "!c#d%ef'g$\ddot \copyright $aeh$\copyright $iXp$$###$$qTsrt$\copyright $ae`Rep'uXa`RXv' 27698 8 . In this paper, an inclusion-exclusion methodology for the estimation of is proposed. Our Y$\copyright $Xw`bex'W$\sterling $1y F EURG!$ H\% approach is based on i) the discretization of a region that contains , and ii) the construction of an open ^ F !c H\% G circular disk, which does not intersect , centered at every grid point . For the cases F !$ H% $$###$$ EUR$$########$$^ EUR$$###$$F !$ H\% \sterling \dots '\dagger G G and an important difference arises in one of the steps of the algorithm. Thus, these two cases are $ddot$#############$£$########Y$©$discussed separately.$
Classification : 15A22, 15A60, 65D18, 65F30, 65F35
Keywords: matrix polynomial, eigenvalue, -numerical range, boundary, inner -numerical radius, Davis- $\sterling \sterling $Wielandt shell
@article{ETNA_2004__17__a12,
     author = {Psarrakos, Panayiotis J.},
     title = {On the estimation of the $q$-numerical range of monic matrix polynomials},
     journal = {Electronic transactions on numerical analysis},
     pages = {1--10},
     publisher = {mathdoc},
     volume = {17},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2004__17__a12/}
}
TY  - JOUR
AU  - Psarrakos, Panayiotis J.
TI  - On the estimation of the $q$-numerical range of monic matrix polynomials
JO  - Electronic transactions on numerical analysis
PY  - 2004
SP  - 1
EP  - 10
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2004__17__a12/
LA  - en
ID  - ETNA_2004__17__a12
ER  - 
%0 Journal Article
%A Psarrakos, Panayiotis J.
%T On the estimation of the $q$-numerical range of monic matrix polynomials
%J Electronic transactions on numerical analysis
%D 2004
%P 1-10
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2004__17__a12/
%G en
%F ETNA_2004__17__a12
Psarrakos, Panayiotis J. On the estimation of the $q$-numerical range of monic matrix polynomials. Electronic transactions on numerical analysis, Tome 17 (2004), pp. 1-10. http://geodesic.mathdoc.fr/item/ETNA_2004__17__a12/