Preconditioning strategies for 2D finite difference matrix sequences
Electronic transactions on numerical analysis, Tome 16 (2003), pp. 1-29.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper we are concerned with the spectral analysis of the sequence of preconditioned matrices P - 1 n $An(a, m1, m2, k)$n, where n = (n1, n2), $N(n) = n1n2$ and where $An(a, m1, m2, k) \in RN(n)\times N(n)$ is the symmetric two-level matrix coming from a high-order Finite Difference (FD) discretization of the problem ###$ \partial k \partial k \partial k $###$ ( a(x, y) u(x, y) + a(x, y) u(x, y) = f$ (x, y) on $\Omega $= (0, 1)2, $$###$$ - 1)k $\partial k $###$ \partial $xk $\partial $xk $\partial $yk $\partial $yk $\partial s $###$ u(x, y) = 0$ s = 0, . . . , k $$###$$ - 1 on $\partial \Omega , $###$ \partial \nu s |\partial \Omega $with $\nu $denoting the unit outward normal direction and where m1 and m2 are parameters identifying the precision order of the used FD schemes. We assume that the coefficient $a(x, y)$ is nonnegative and that the set of the possible zeros can be represented by a finite collection of curves. The proposed preconditioning matrix sequences correspond to two different choices: the Toeplitz sequence ${An(1, m1, m2, k)}$n and a Toeplitz based sequence that adds to the Toeplitz structure the informative content given by the suitable scaled diagonal part of $An(a, m1, m2, k)$. The former case gives rise to optimal preconditioning sequences under the assumption of positivity and boundedness of a. With respect to the latter, the main result is the proof of the asymptotic clustering at unity of the eigenvalues of the preconditioned matrices, where the "strength" of the cluster depends on the order k, on the regularity features of $a(x, y)$ and on the presence of zeros of $a(x, y)$.
Classification : 65F10, 65N22, 65F15
Keywords: finite differences, Toeplitz and vandermonde matrices, clustering and preconditioning, spectral distribution
@article{ETNA_2003__16__a9,
     author = {Serra Capizzano, Stefano and Tablino Possio, Cristina},
     title = {Preconditioning strategies for {2D} finite difference matrix sequences},
     journal = {Electronic transactions on numerical analysis},
     pages = {1--29},
     publisher = {mathdoc},
     volume = {16},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2003__16__a9/}
}
TY  - JOUR
AU  - Serra Capizzano, Stefano
AU  - Tablino Possio, Cristina
TI  - Preconditioning strategies for 2D finite difference matrix sequences
JO  - Electronic transactions on numerical analysis
PY  - 2003
SP  - 1
EP  - 29
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2003__16__a9/
LA  - en
ID  - ETNA_2003__16__a9
ER  - 
%0 Journal Article
%A Serra Capizzano, Stefano
%A Tablino Possio, Cristina
%T Preconditioning strategies for 2D finite difference matrix sequences
%J Electronic transactions on numerical analysis
%D 2003
%P 1-29
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2003__16__a9/
%G en
%F ETNA_2003__16__a9
Serra Capizzano, Stefano; Tablino Possio, Cristina. Preconditioning strategies for 2D finite difference matrix sequences. Electronic transactions on numerical analysis, Tome 16 (2003), pp. 1-29. http://geodesic.mathdoc.fr/item/ETNA_2003__16__a9/