General theorems for numerical approximation of stochastic processes on the Hilbert space $H_2([0,T], \mu,\bbfR^d)$
Electronic transactions on numerical analysis, Tome 16 (2003), pp. 50-69.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: General theorems for the numerical approximation on the separable Hilbert space IR !"$#\% \('0)213'546' 78 of cadlag, -adapted stochastic processes with -integrable second moments is presented for nonrandom intervals #@9BAC8 4 and positive measure . The use of the theorems is illustrated by the special case of systems of ordinary \% \('D)21 4 stochastic differential equations (SDEs) and their numerical approximation given by the drift-implicit Euler method under one-sided Lipschitz-type conditions.$
Classification : 65C20, 65C30, 65C50, 60H10, 37H10, 34F05
Keywords: stochastic-numerical approximation, stochastic Lax-theorem, ordinary stochastic differential equations, numerical methods, drift-implicit Euler methods, balanced implicit methods
@article{ETNA_2003__16__a7,
     author = {Schurz, Henri},
     title = {General theorems for numerical approximation of stochastic processes on the {Hilbert} space $H_2([0,T], \mu,\bbfR^d)$},
     journal = {Electronic transactions on numerical analysis},
     pages = {50--69},
     publisher = {mathdoc},
     volume = {16},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2003__16__a7/}
}
TY  - JOUR
AU  - Schurz, Henri
TI  - General theorems for numerical approximation of stochastic processes on the Hilbert space $H_2([0,T], \mu,\bbfR^d)$
JO  - Electronic transactions on numerical analysis
PY  - 2003
SP  - 50
EP  - 69
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2003__16__a7/
LA  - en
ID  - ETNA_2003__16__a7
ER  - 
%0 Journal Article
%A Schurz, Henri
%T General theorems for numerical approximation of stochastic processes on the Hilbert space $H_2([0,T], \mu,\bbfR^d)$
%J Electronic transactions on numerical analysis
%D 2003
%P 50-69
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2003__16__a7/
%G en
%F ETNA_2003__16__a7
Schurz, Henri. General theorems for numerical approximation of stochastic processes on the Hilbert space $H_2([0,T], \mu,\bbfR^d)$. Electronic transactions on numerical analysis, Tome 16 (2003), pp. 50-69. http://geodesic.mathdoc.fr/item/ETNA_2003__16__a7/