A rational spectral problem in fluid-solid vibration
Electronic transactions on numerical analysis, Tome 16 (2003), pp. 93-105.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper we apply a minmax characterization for nonoverdamped nonlinear eigenvalue problems to a rational eigenproblem governing mechanical vibrations of a tube bundle immersed in an inviscid compressible fluid. This eigenproblem is nonstandard in two respects: it depends rationally on the eigenparameter, and it involves non-local boundary conditions. Comparison results are proved comparing the eigenvalues of the rational problem to those of certain linear problems suggesting a way how to construct ansatz vectors for an efficient projection method.
Classification : 49G05
Keywords: nonlinear eigenvalue problem, maxmin principle, fluid structure interaction
@article{ETNA_2003__16__a5,
     author = {Voss, Heinrich},
     title = {A rational spectral problem in fluid-solid vibration},
     journal = {Electronic transactions on numerical analysis},
     pages = {93--105},
     publisher = {mathdoc},
     volume = {16},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2003__16__a5/}
}
TY  - JOUR
AU  - Voss, Heinrich
TI  - A rational spectral problem in fluid-solid vibration
JO  - Electronic transactions on numerical analysis
PY  - 2003
SP  - 93
EP  - 105
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2003__16__a5/
LA  - en
ID  - ETNA_2003__16__a5
ER  - 
%0 Journal Article
%A Voss, Heinrich
%T A rational spectral problem in fluid-solid vibration
%J Electronic transactions on numerical analysis
%D 2003
%P 93-105
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2003__16__a5/
%G en
%F ETNA_2003__16__a5
Voss, Heinrich. A rational spectral problem in fluid-solid vibration. Electronic transactions on numerical analysis, Tome 16 (2003), pp. 93-105. http://geodesic.mathdoc.fr/item/ETNA_2003__16__a5/