A parameter choice method for Tikhonov regularization
Electronic transactions on numerical analysis, Tome 16 (2003), pp. 107-128.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A new parameter choice method for Tikhonov regularization of discrete ill-posed problems is presented. Some of the regularized solutions of a discrete ill-posed problem are less sensitive than others to the perturbations in the right-hand side vector. This method chooses one of the insensitive regularized solutions using a certain criterion. Numerical experiments show that the new method is competitive with the popular L-curve method. An analysis of the new method is given for a model problem, which explains how this method works.
Classification : 65F22
Keywords: discrete ill-posed problems, discrete Picard condition, Tikhonov regularization
@article{ETNA_2003__16__a4,
     author = {Wu, Limin},
     title = {A parameter choice method for {Tikhonov} regularization},
     journal = {Electronic transactions on numerical analysis},
     pages = {107--128},
     publisher = {mathdoc},
     volume = {16},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2003__16__a4/}
}
TY  - JOUR
AU  - Wu, Limin
TI  - A parameter choice method for Tikhonov regularization
JO  - Electronic transactions on numerical analysis
PY  - 2003
SP  - 107
EP  - 128
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2003__16__a4/
LA  - en
ID  - ETNA_2003__16__a4
ER  - 
%0 Journal Article
%A Wu, Limin
%T A parameter choice method for Tikhonov regularization
%J Electronic transactions on numerical analysis
%D 2003
%P 107-128
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2003__16__a4/
%G en
%F ETNA_2003__16__a4
Wu, Limin. A parameter choice method for Tikhonov regularization. Electronic transactions on numerical analysis, Tome 16 (2003), pp. 107-128. http://geodesic.mathdoc.fr/item/ETNA_2003__16__a4/