A multigrid method for distributed parameter estimation problems
Electronic transactions on numerical analysis, Tome 15 (2003), pp. 1-17.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: This paper considers problems of distributed parameter estimation from data measurements on solutions of partial differential equations (PDEs). A nonlinear least squares functional is minimized to approximately recover the sought parameter function (i.e., the model). This functional consists of a data fitting term, involving the solution of a finite volume or finite element discretization of the forward differential equation, and a Tikhonov-type regularization term, involving the discretization of a mix of model derivatives.
Classification : 65M32, 65N55
Keywords: distributed parameter estimation, inverse problem, multigrid method
@article{ETNA_2003__15__a14,
     author = {Ascher, U.M. and Haber, E.},
     title = {A multigrid method for distributed parameter estimation problems},
     journal = {Electronic transactions on numerical analysis},
     pages = {1--17},
     publisher = {mathdoc},
     volume = {15},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2003__15__a14/}
}
TY  - JOUR
AU  - Ascher, U.M.
AU  - Haber, E.
TI  - A multigrid method for distributed parameter estimation problems
JO  - Electronic transactions on numerical analysis
PY  - 2003
SP  - 1
EP  - 17
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2003__15__a14/
LA  - en
ID  - ETNA_2003__15__a14
ER  - 
%0 Journal Article
%A Ascher, U.M.
%A Haber, E.
%T A multigrid method for distributed parameter estimation problems
%J Electronic transactions on numerical analysis
%D 2003
%P 1-17
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2003__15__a14/
%G en
%F ETNA_2003__15__a14
Ascher, U.M.; Haber, E. A multigrid method for distributed parameter estimation problems. Electronic transactions on numerical analysis, Tome 15 (2003), pp. 1-17. http://geodesic.mathdoc.fr/item/ETNA_2003__15__a14/