Uncertainty principles revisited
Electronic transactions on numerical analysis, Tome 14 (2002), pp. 165-177.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The Heisenberg uncertainty principle and the uncertainty principle for self-adjoint operators have been known and applied for decades. Both in quantum mechanics and in time-frequency analysis they play an important role. In this paper, the uncertainty principle is extended to symmetric operators and to normal operators.
Classification : 26D10, 42C25, 47A05, 47A30, 47B47
Keywords: uncertainty principle, self-adjoint operators, symmetric operators, normal operators, periodic functions, ultraspherical polynomials, sphere
@article{ETNA_2002__14__a3,
     author = {Selig, Kathi K.},
     title = {Uncertainty principles revisited},
     journal = {Electronic transactions on numerical analysis},
     pages = {165--177},
     publisher = {mathdoc},
     volume = {14},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2002__14__a3/}
}
TY  - JOUR
AU  - Selig, Kathi K.
TI  - Uncertainty principles revisited
JO  - Electronic transactions on numerical analysis
PY  - 2002
SP  - 165
EP  - 177
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2002__14__a3/
LA  - en
ID  - ETNA_2002__14__a3
ER  - 
%0 Journal Article
%A Selig, Kathi K.
%T Uncertainty principles revisited
%J Electronic transactions on numerical analysis
%D 2002
%P 165-177
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2002__14__a3/
%G en
%F ETNA_2002__14__a3
Selig, Kathi K. Uncertainty principles revisited. Electronic transactions on numerical analysis, Tome 14 (2002), pp. 165-177. http://geodesic.mathdoc.fr/item/ETNA_2002__14__a3/