$L$-curve curvature bounds via Lanczos bidiagonalization
Electronic transactions on numerical analysis, Tome 14 (2002), pp. 20-35.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The L-curve is often applied to determine a suitable value of the regularization parameter when solving ill-conditioned linear systems of equations with a right-hand side contaminated by errors of unknown norm.
Keywords: ill-posed problem, regularization, L-curve, Gauss quadrature
@article{ETNA_2002__14__a11,
     author = {Calvetti, D. and Hansen, P.C. and Reichel, L.},
     title = {$L$-curve curvature bounds via {Lanczos} bidiagonalization},
     journal = {Electronic transactions on numerical analysis},
     pages = {20--35},
     publisher = {mathdoc},
     volume = {14},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2002__14__a11/}
}
TY  - JOUR
AU  - Calvetti, D.
AU  - Hansen, P.C.
AU  - Reichel, L.
TI  - $L$-curve curvature bounds via Lanczos bidiagonalization
JO  - Electronic transactions on numerical analysis
PY  - 2002
SP  - 20
EP  - 35
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2002__14__a11/
LA  - en
ID  - ETNA_2002__14__a11
ER  - 
%0 Journal Article
%A Calvetti, D.
%A Hansen, P.C.
%A Reichel, L.
%T $L$-curve curvature bounds via Lanczos bidiagonalization
%J Electronic transactions on numerical analysis
%D 2002
%P 20-35
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2002__14__a11/
%G en
%F ETNA_2002__14__a11
Calvetti, D.; Hansen, P.C.; Reichel, L. $L$-curve curvature bounds via Lanczos bidiagonalization. Electronic transactions on numerical analysis, Tome 14 (2002), pp. 20-35. http://geodesic.mathdoc.fr/item/ETNA_2002__14__a11/