On convergence and divergence of Fourier-Bessel series
Electronic transactions on numerical analysis, Tome 14 (2002), pp. 223-235.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We furnish another proof, based on an idea of Prestini [13], of a maximal inequality for the partial sum operators of Fourier-Bessel expansions proved by Guadalupe, P$\acute $erez, Ruiz and Varona [8]. Divergence results and mean convergence are also discussed.
Classification : 42C10
Keywords: Fourier-Bessel expansions, almost everywhere and norm convergence
@article{ETNA_2002__14__a0,
     author = {Stempak, Krzysztof},
     title = {On convergence and divergence of {Fourier-Bessel} series},
     journal = {Electronic transactions on numerical analysis},
     pages = {223--235},
     publisher = {mathdoc},
     volume = {14},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2002__14__a0/}
}
TY  - JOUR
AU  - Stempak, Krzysztof
TI  - On convergence and divergence of Fourier-Bessel series
JO  - Electronic transactions on numerical analysis
PY  - 2002
SP  - 223
EP  - 235
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2002__14__a0/
LA  - en
ID  - ETNA_2002__14__a0
ER  - 
%0 Journal Article
%A Stempak, Krzysztof
%T On convergence and divergence of Fourier-Bessel series
%J Electronic transactions on numerical analysis
%D 2002
%P 223-235
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2002__14__a0/
%G en
%F ETNA_2002__14__a0
Stempak, Krzysztof. On convergence and divergence of Fourier-Bessel series. Electronic transactions on numerical analysis, Tome 14 (2002), pp. 223-235. http://geodesic.mathdoc.fr/item/ETNA_2002__14__a0/