A uniformly accurate finite volume discretization for a convection-diffusion problem
Electronic transactions on numerical analysis, Tome 13 (2002), pp. 1-11.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A singularly perturbed convection-diffusion problem is considered. The problem is discretized using an inverse-monotone finite volume method on Shishkin meshes. We establish first-order convergence in a global energy norm and a mesh-dependent discrete energy norm, no matter how small the perturbation parameter. Numerical experiments support the theoretical results.
Classification : 65N30
Keywords: convection-diffusion problems, finite volume methods, singular perturbation, shishkin mesh
@article{ETNA_2002__13__a7,
     author = {Wollstein, Dirk and Lin{\ss}, Torsten and Roos, Hans-G\"org},
     title = {A uniformly accurate finite volume discretization for a convection-diffusion problem},
     journal = {Electronic transactions on numerical analysis},
     pages = {1--11},
     publisher = {mathdoc},
     volume = {13},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2002__13__a7/}
}
TY  - JOUR
AU  - Wollstein, Dirk
AU  - Linß, Torsten
AU  - Roos, Hans-Görg
TI  - A uniformly accurate finite volume discretization for a convection-diffusion problem
JO  - Electronic transactions on numerical analysis
PY  - 2002
SP  - 1
EP  - 11
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2002__13__a7/
LA  - en
ID  - ETNA_2002__13__a7
ER  - 
%0 Journal Article
%A Wollstein, Dirk
%A Linß, Torsten
%A Roos, Hans-Görg
%T A uniformly accurate finite volume discretization for a convection-diffusion problem
%J Electronic transactions on numerical analysis
%D 2002
%P 1-11
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2002__13__a7/
%G en
%F ETNA_2002__13__a7
Wollstein, Dirk; Linß, Torsten; Roos, Hans-Görg. A uniformly accurate finite volume discretization for a convection-diffusion problem. Electronic transactions on numerical analysis, Tome 13 (2002), pp. 1-11. http://geodesic.mathdoc.fr/item/ETNA_2002__13__a7/