Multigrid preconditioning and Toeplitz matrices
Electronic transactions on numerical analysis, Tome 13 (2002), pp. 81-105.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper we discuss multigrid methods for symmetric Toeplitz matrices. Then the restriction and prolongation operators can be seen as projected Toeplitz matrices. Because of the intimate connection between such matrices and trigonometric series we can express the multigrid algorithm in terms of the underlying functions with special zeros. This shows how to choose the prolongation/restriction operator in order to get fast convergence.
Classification : 65N55, 65F10, 65F22, 65F35, 65R20
Keywords: multigrid methods, iterative methods, preconditioning, Toeplitz matrices, Fredholm integral equations, image deblurring
@article{ETNA_2002__13__a2,
     author = {Huckle, Thomas and Staudacher, Jochen},
     title = {Multigrid preconditioning and {Toeplitz} matrices},
     journal = {Electronic transactions on numerical analysis},
     pages = {81--105},
     publisher = {mathdoc},
     volume = {13},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2002__13__a2/}
}
TY  - JOUR
AU  - Huckle, Thomas
AU  - Staudacher, Jochen
TI  - Multigrid preconditioning and Toeplitz matrices
JO  - Electronic transactions on numerical analysis
PY  - 2002
SP  - 81
EP  - 105
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2002__13__a2/
LA  - en
ID  - ETNA_2002__13__a2
ER  - 
%0 Journal Article
%A Huckle, Thomas
%A Staudacher, Jochen
%T Multigrid preconditioning and Toeplitz matrices
%J Electronic transactions on numerical analysis
%D 2002
%P 81-105
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2002__13__a2/
%G en
%F ETNA_2002__13__a2
Huckle, Thomas; Staudacher, Jochen. Multigrid preconditioning and Toeplitz matrices. Electronic transactions on numerical analysis, Tome 13 (2002), pp. 81-105. http://geodesic.mathdoc.fr/item/ETNA_2002__13__a2/