Polynomial eigenvalue problems with Hamiltonian structure
Electronic transactions on numerical analysis, Tome 13 (2002), pp. 106-118.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We discuss the numerical solution of eigenvalue problems for matrix polynomials, where the coefficient matrices are alternating symmetric and skew symmetric or Hamiltonian and skew Hamiltonian. We discuss several applications that lead to such structures. Matrix polynomials of this type have a symmetry in the spectrum that is the same as that of Hamiltonian matrices or skew-Hamiltonian/Hamiltonian pencils. The numerical methods that we derive are designed to preserve this eigenvalue symmetry. We also discuss linearization techniques that transform the polynomial into a skew-Hamiltonian/Hamiltonian linear eigenvalue problem with a specific substructure. For this linear eigenvalue problem we discuss special factorizations that are useful in shiftand-invert Krylov subspace methods for the solution of the eigenvalue problem. We present a numerical example that demonstrates the effectiveness of our approach.
Classification : 65F15, 15A18, 15A22
Keywords: matrix polynomial, Hamiltonian matrix, skew-Hamiltonian matrix, skew- Hamiltonian/Hamiltonian pencil, matrix factorizations
@article{ETNA_2002__13__a1,
     author = {Mehrmann, Volker and Watkins, David},
     title = {Polynomial eigenvalue problems with {Hamiltonian} structure},
     journal = {Electronic transactions on numerical analysis},
     pages = {106--118},
     publisher = {mathdoc},
     volume = {13},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2002__13__a1/}
}
TY  - JOUR
AU  - Mehrmann, Volker
AU  - Watkins, David
TI  - Polynomial eigenvalue problems with Hamiltonian structure
JO  - Electronic transactions on numerical analysis
PY  - 2002
SP  - 106
EP  - 118
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2002__13__a1/
LA  - en
ID  - ETNA_2002__13__a1
ER  - 
%0 Journal Article
%A Mehrmann, Volker
%A Watkins, David
%T Polynomial eigenvalue problems with Hamiltonian structure
%J Electronic transactions on numerical analysis
%D 2002
%P 106-118
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2002__13__a1/
%G en
%F ETNA_2002__13__a1
Mehrmann, Volker; Watkins, David. Polynomial eigenvalue problems with Hamiltonian structure. Electronic transactions on numerical analysis, Tome 13 (2002), pp. 106-118. http://geodesic.mathdoc.fr/item/ETNA_2002__13__a1/