A multigrid method for saddle point problems arising from mortar finite element discretizations
Electronic transactions on numerical analysis, Tome 11 (2000), pp. 43-54.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A multigrid algorithm for saddle point problems arising from mortar finite element discretizations is analyzed. Here, we do not require that the constraints at the interface are satisfied in each smoothing step, but we work on the squared system. Using mesh dependent norms for the Lagrange multipliers, suitable approximation and smoothing properties are established. A convergence rate independent of the meshsize is obtained for the W-cycle.
Classification : 65N22, 65N30, 65N55
Keywords: mortar finite elements, saddle point problems, multigrid methods
@article{ETNA_2000__11__a5,
     author = {Wohlmuth, Barbara I.},
     title = {A multigrid method for saddle point problems arising from mortar finite element discretizations},
     journal = {Electronic transactions on numerical analysis},
     pages = {43--54},
     publisher = {mathdoc},
     volume = {11},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2000__11__a5/}
}
TY  - JOUR
AU  - Wohlmuth, Barbara I.
TI  - A multigrid method for saddle point problems arising from mortar finite element discretizations
JO  - Electronic transactions on numerical analysis
PY  - 2000
SP  - 43
EP  - 54
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2000__11__a5/
LA  - en
ID  - ETNA_2000__11__a5
ER  - 
%0 Journal Article
%A Wohlmuth, Barbara I.
%T A multigrid method for saddle point problems arising from mortar finite element discretizations
%J Electronic transactions on numerical analysis
%D 2000
%P 43-54
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2000__11__a5/
%G en
%F ETNA_2000__11__a5
Wohlmuth, Barbara I. A multigrid method for saddle point problems arising from mortar finite element discretizations. Electronic transactions on numerical analysis, Tome 11 (2000), pp. 43-54. http://geodesic.mathdoc.fr/item/ETNA_2000__11__a5/