High-order finite difference schemes and Toeplitz based preconditioners for elliptic problems
Electronic transactions on numerical analysis, Tome 11 (2000), pp. 55-84.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper we are concerned with the spectral analysis of the sequence of preconditioned matrices P - 1 n (a, m, k)$An(a, m, k)$n, where $An(a, m, k)$ is the n $\times n$ symmetric matrix coming from a high-order Finite Difference discretization of the problem $$###$$ dk $$###$ ( a(x) u(x) = f$ (x) on $\Omega $= (0, 1), $$###$$ - )k dk dxk dxk ds $$###$ u(x) = 0$ s = 0, . . . , k $$###$$ - 1.
Classification : 65N22, 65F10, 15A12
Keywords: finite differences, Toeplitz and vandermonde matrices, clustering and preconditioning, ergodic theorems, spectral distribution
@article{ETNA_2000__11__a4,
     author = {Serra Capizzano, Stefano and Tablino Possio, Cristina},
     title = {High-order finite difference schemes and {Toeplitz} based preconditioners for elliptic problems},
     journal = {Electronic transactions on numerical analysis},
     pages = {55--84},
     publisher = {mathdoc},
     volume = {11},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_2000__11__a4/}
}
TY  - JOUR
AU  - Serra Capizzano, Stefano
AU  - Tablino Possio, Cristina
TI  - High-order finite difference schemes and Toeplitz based preconditioners for elliptic problems
JO  - Electronic transactions on numerical analysis
PY  - 2000
SP  - 55
EP  - 84
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_2000__11__a4/
LA  - en
ID  - ETNA_2000__11__a4
ER  - 
%0 Journal Article
%A Serra Capizzano, Stefano
%A Tablino Possio, Cristina
%T High-order finite difference schemes and Toeplitz based preconditioners for elliptic problems
%J Electronic transactions on numerical analysis
%D 2000
%P 55-84
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_2000__11__a4/
%G en
%F ETNA_2000__11__a4
Serra Capizzano, Stefano; Tablino Possio, Cristina. High-order finite difference schemes and Toeplitz based preconditioners for elliptic problems. Electronic transactions on numerical analysis, Tome 11 (2000), pp. 55-84. http://geodesic.mathdoc.fr/item/ETNA_2000__11__a4/