Quadrature formulas for rational functions
Electronic transactions on numerical analysis, Tome 9 (1999), pp. 39-52.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $\omega $be an L1-integrable function on [ - 1, 1] and let us denote 1 I$\omega (f) = f$ (x)$\omega (x)$dx, - 1 where f is any bounded integrable function with respect to the weight function $\omega $. We consider rational interpolatory quadrature formulas (RIQFs) where all the poles are preassigned and the interpolation is carried out along a table of points contained in [ - 1, 1].
Classification : 41A21, 42C05, 30E10
Keywords: weight functions, interpolatory quadrature formulas, orthogonal polynomials, multipoint pad$\acute $e-type approximants
@article{ETNA_1999__9__a9,
     author = {Rodriguez, F.Cala and Gonzalez-Vera, P. and Paiz, M.Jimenez},
     title = {Quadrature formulas for rational functions},
     journal = {Electronic transactions on numerical analysis},
     pages = {39--52},
     publisher = {mathdoc},
     volume = {9},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_1999__9__a9/}
}
TY  - JOUR
AU  - Rodriguez, F.Cala
AU  - Gonzalez-Vera, P.
AU  - Paiz, M.Jimenez
TI  - Quadrature formulas for rational functions
JO  - Electronic transactions on numerical analysis
PY  - 1999
SP  - 39
EP  - 52
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_1999__9__a9/
LA  - en
ID  - ETNA_1999__9__a9
ER  - 
%0 Journal Article
%A Rodriguez, F.Cala
%A Gonzalez-Vera, P.
%A Paiz, M.Jimenez
%T Quadrature formulas for rational functions
%J Electronic transactions on numerical analysis
%D 1999
%P 39-52
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_1999__9__a9/
%G en
%F ETNA_1999__9__a9
Rodriguez, F.Cala; Gonzalez-Vera, P.; Paiz, M.Jimenez. Quadrature formulas for rational functions. Electronic transactions on numerical analysis, Tome 9 (1999), pp. 39-52. http://geodesic.mathdoc.fr/item/ETNA_1999__9__a9/