$Q$-classical orthogonal polynomials: A very classical approach
Electronic transactions on numerical analysis, Tome 9 (1999), pp. 112-127.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The q - classical orthogonal polynomials defined by Hahn satisfy a Sturm-Liouville type equation in geometric differences. Working with this, we classify the q - classical polynomials in twelve families according to the zeros of the polynomial coefficients of the equation and the behavior concerning to q - 1 . We determine a q - analogue of the weight function for the twelve families, and we give a representation of its orthogonality relation and its q - integral. We describe this representation in some normal and special cases (indeterminate moment problem and finite orthogonal sequences). Finally, the Sturm-Liouville type equation allows us to establish the correspondence between this classification and the Askey Scheme.
Classification : 33D25
Keywords: orthogonal q, polynomials, classical polynomials
@article{ETNA_1999__9__a3,
     author = {Marcell\'an, F. and Medem, J.C.},
     title = {$Q$-classical orthogonal polynomials: {A} very classical approach},
     journal = {Electronic transactions on numerical analysis},
     pages = {112--127},
     publisher = {mathdoc},
     volume = {9},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_1999__9__a3/}
}
TY  - JOUR
AU  - Marcellán, F.
AU  - Medem, J.C.
TI  - $Q$-classical orthogonal polynomials: A very classical approach
JO  - Electronic transactions on numerical analysis
PY  - 1999
SP  - 112
EP  - 127
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_1999__9__a3/
LA  - en
ID  - ETNA_1999__9__a3
ER  - 
%0 Journal Article
%A Marcellán, F.
%A Medem, J.C.
%T $Q$-classical orthogonal polynomials: A very classical approach
%J Electronic transactions on numerical analysis
%D 1999
%P 112-127
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_1999__9__a3/
%G en
%F ETNA_1999__9__a3
Marcellán, F.; Medem, J.C. $Q$-classical orthogonal polynomials: A very classical approach. Electronic transactions on numerical analysis, Tome 9 (1999), pp. 112-127. http://geodesic.mathdoc.fr/item/ETNA_1999__9__a3/