Evaluation of associated Legendre functions off the cut and parabolic cylinder functions
Electronic transactions on numerical analysis, Tome 9 (1999), pp. 137-146.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We review a set of algorithms to evaluate associated Legendre functions off the cut; in particular, we consider prolate spheroidal, oblate spheroidal and toroidal harmonics. A similar scheme can be applied to other families of special functions like Bessel and parabolic cylinder functions; we will describe the corresponding algorithm for the evaluation of parabolic cylinder functions.
Classification : 65D20, 33-04, 33C05, 33A70
Keywords: computation of special functions, Legendre functions, parabolic cylinder functions
@article{ETNA_1999__9__a1,
     author = {Segura, Javier and Gil, Amparo},
     title = {Evaluation of associated {Legendre} functions off the cut and parabolic cylinder functions},
     journal = {Electronic transactions on numerical analysis},
     pages = {137--146},
     publisher = {mathdoc},
     volume = {9},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_1999__9__a1/}
}
TY  - JOUR
AU  - Segura, Javier
AU  - Gil, Amparo
TI  - Evaluation of associated Legendre functions off the cut and parabolic cylinder functions
JO  - Electronic transactions on numerical analysis
PY  - 1999
SP  - 137
EP  - 146
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_1999__9__a1/
LA  - en
ID  - ETNA_1999__9__a1
ER  - 
%0 Journal Article
%A Segura, Javier
%A Gil, Amparo
%T Evaluation of associated Legendre functions off the cut and parabolic cylinder functions
%J Electronic transactions on numerical analysis
%D 1999
%P 137-146
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_1999__9__a1/
%G en
%F ETNA_1999__9__a1
Segura, Javier; Gil, Amparo. Evaluation of associated Legendre functions off the cut and parabolic cylinder functions. Electronic transactions on numerical analysis, Tome 9 (1999), pp. 137-146. http://geodesic.mathdoc.fr/item/ETNA_1999__9__a1/