An optimum iteration for the matrix polar decomposition
Electronic transactions on numerical analysis, Tome 8 (1999), pp. 21-25.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: It is shown that an acceleration parameter derived from the Frobenius norm makes Newton's iteration for the computation of the polar decomposition optimal and monotonic in norm. A simple machine-independent stopping criterion ensues. These features are extended to Gander's formulas for full-rank rectangular matrices.
Classification : 65F30, 65F35
Keywords: matrix polar decomposition, Newton iteration
@article{ETNA_1999__8__a8,
     author = {Dubrulle, A.A.},
     title = {An optimum iteration for the matrix polar decomposition},
     journal = {Electronic transactions on numerical analysis},
     pages = {21--25},
     publisher = {mathdoc},
     volume = {8},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_1999__8__a8/}
}
TY  - JOUR
AU  - Dubrulle, A.A.
TI  - An optimum iteration for the matrix polar decomposition
JO  - Electronic transactions on numerical analysis
PY  - 1999
SP  - 21
EP  - 25
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_1999__8__a8/
LA  - en
ID  - ETNA_1999__8__a8
ER  - 
%0 Journal Article
%A Dubrulle, A.A.
%T An optimum iteration for the matrix polar decomposition
%J Electronic transactions on numerical analysis
%D 1999
%P 21-25
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_1999__8__a8/
%G en
%F ETNA_1999__8__a8
Dubrulle, A.A. An optimum iteration for the matrix polar decomposition. Electronic transactions on numerical analysis, Tome 8 (1999), pp. 21-25. http://geodesic.mathdoc.fr/item/ETNA_1999__8__a8/