Whitney elements on pyramids
Electronic transactions on numerical analysis, Tome 8 (1999), pp. 154-168.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Conforming finite elements in (div; $\Omega $) and (curl; $\Omega $) can be regarded as discrete differential H H forms (Whitney-forms). The construction of such forms is based on an interpolation idea, which boils down to a simple extension of the differential form to the interior of elements. This flexible approach can accommodate elements of more complicated shapes than merely tetrahedra and bricks. The pyramid serves as an example for the successful application of the construction: New Whitney forms are derived for it and they display all desirable properties of conforming finite elements.
Classification : 65N30, 41A10, 58A15
Keywords: Whitney elements, edge elements, pyramidal element
@article{ETNA_1999__8__a0,
     author = {Gradinaru, V. and Hiptmair, R.},
     title = {Whitney elements on pyramids},
     journal = {Electronic transactions on numerical analysis},
     pages = {154--168},
     publisher = {mathdoc},
     volume = {8},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_1999__8__a0/}
}
TY  - JOUR
AU  - Gradinaru, V.
AU  - Hiptmair, R.
TI  - Whitney elements on pyramids
JO  - Electronic transactions on numerical analysis
PY  - 1999
SP  - 154
EP  - 168
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_1999__8__a0/
LA  - en
ID  - ETNA_1999__8__a0
ER  - 
%0 Journal Article
%A Gradinaru, V.
%A Hiptmair, R.
%T Whitney elements on pyramids
%J Electronic transactions on numerical analysis
%D 1999
%P 154-168
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_1999__8__a0/
%G en
%F ETNA_1999__8__a0
Gradinaru, V.; Hiptmair, R. Whitney elements on pyramids. Electronic transactions on numerical analysis, Tome 8 (1999), pp. 154-168. http://geodesic.mathdoc.fr/item/ETNA_1999__8__a0/