Krylov subspace acceleration for nonlinear multigrid schemes
Electronic transactions on numerical analysis, Tome 6 (1997), pp. 271-290.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper we present a Krylov acceleration technique for nonlinear PDEs. As a `preconditioner' we use nonlinear multigrid schemes such as the Full Approximation Scheme (FAS) [1]. The benefits of nonlinear multigrid used in combination with the new accelerator are illustrated by difficult nonlinear elliptic scalar problems, such as the Bratu problem, and for systems of nonlinear equations, such as the Navier-Stokes equations.
Classification : 65N55, 65H10, 65Bxx
Keywords: nonlinear Krylov acceleration, nonlinear multigrid, robustness, restarting conditions
@article{ETNA_1997__6__a0,
     author = {Washio, T. and Oosterlee, C.W.},
     title = {Krylov subspace acceleration for nonlinear multigrid schemes},
     journal = {Electronic transactions on numerical analysis},
     pages = {271--290},
     publisher = {mathdoc},
     volume = {6},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_1997__6__a0/}
}
TY  - JOUR
AU  - Washio, T.
AU  - Oosterlee, C.W.
TI  - Krylov subspace acceleration for nonlinear multigrid schemes
JO  - Electronic transactions on numerical analysis
PY  - 1997
SP  - 271
EP  - 290
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_1997__6__a0/
LA  - en
ID  - ETNA_1997__6__a0
ER  - 
%0 Journal Article
%A Washio, T.
%A Oosterlee, C.W.
%T Krylov subspace acceleration for nonlinear multigrid schemes
%J Electronic transactions on numerical analysis
%D 1997
%P 271-290
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_1997__6__a0/
%G en
%F ETNA_1997__6__a0
Washio, T.; Oosterlee, C.W. Krylov subspace acceleration for nonlinear multigrid schemes. Electronic transactions on numerical analysis, Tome 6 (1997), pp. 271-290. http://geodesic.mathdoc.fr/item/ETNA_1997__6__a0/