BiCGstab($l$) for linear equations involving unsymmetric matrices with complex spectrum
Electronic transactions on numerical analysis, Tome 1 (1993), pp. 11-32.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: For a number of linear systems of equations arising from realistic problems, using the Bi-CGSTAB algorithm of van der Vorst [17] to solve these equations is very attractive. Unfortunately, for a large class of equations, where, for instance, Bi-CG performs well, the convergence of Bi- CGSTAB stagnates. This was observed specifically in case of discretized advection dominated PDE's.
Classification : 65F10
Keywords: bi-conjugate gradients, non-symmetric linear systems, CGS, bi-CGSTAB, iterative solvers, GMRES, Krylov subspace
@article{ETNA_1993__1__a5,
     author = {Sleijpen, Gerard L.G. and Fokkema, Diederik R.},
     title = {BiCGstab($l$) for linear equations involving unsymmetric matrices with complex spectrum},
     journal = {Electronic transactions on numerical analysis},
     pages = {11--32},
     publisher = {mathdoc},
     volume = {1},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ETNA_1993__1__a5/}
}
TY  - JOUR
AU  - Sleijpen, Gerard L.G.
AU  - Fokkema, Diederik R.
TI  - BiCGstab($l$) for linear equations involving unsymmetric matrices with complex spectrum
JO  - Electronic transactions on numerical analysis
PY  - 1993
SP  - 11
EP  - 32
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ETNA_1993__1__a5/
LA  - en
ID  - ETNA_1993__1__a5
ER  - 
%0 Journal Article
%A Sleijpen, Gerard L.G.
%A Fokkema, Diederik R.
%T BiCGstab($l$) for linear equations involving unsymmetric matrices with complex spectrum
%J Electronic transactions on numerical analysis
%D 1993
%P 11-32
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ETNA_1993__1__a5/
%G en
%F ETNA_1993__1__a5
Sleijpen, Gerard L.G.; Fokkema, Diederik R. BiCGstab($l$) for linear equations involving unsymmetric matrices with complex spectrum. Electronic transactions on numerical analysis, Tome 1 (1993), pp. 11-32. http://geodesic.mathdoc.fr/item/ETNA_1993__1__a5/