Weak continuity of Jacobians of $W_\nu^1$-homeomorphisms on Carnot groups
Eurasian mathematical journal, Tome 15 (2024) no. 4, pp. 82-95 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The limit of a locally uniformly converging sequence of analytic functions is an analytic function. Yu.G. Reshetnyak obtained a natural generalization of that in the theory of mappings with bounded distortion: the limit of every locally uniformly converging sequence of mappings with bounded distortion is a mapping with bounded distortion, and established the weak continuity of the Jacobians. In this article, similar problems are studied for a sequence of Sobolev-class homeomorphisms defined on a domain in a two-step Carnot group. We show that if such a sequence converges to some homeomorphism locally uniformly, the sequence of horizontal differentials of its terms is bounded in $L_{\nu,\mathrm{loc}}$, and the Jacobians of the terms of the sequence are nonnegative almost everywhere, then the sequence of Jacobians converges to the Jacobian of the limit homeomorphism weakly in $L_{\nu,\mathrm{loc}}$; here $\nu$ is the Hausdorff dimension of the group.
@article{EMJ_2024_15_4_a4,
     author = {S. V. Pavlov and S. K. Vodopyanov},
     title = {Weak continuity of {Jacobians} of $W_\nu^1$-homeomorphisms on {Carnot} groups},
     journal = {Eurasian mathematical journal},
     pages = {82--95},
     year = {2024},
     volume = {15},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2024_15_4_a4/}
}
TY  - JOUR
AU  - S. V. Pavlov
AU  - S. K. Vodopyanov
TI  - Weak continuity of Jacobians of $W_\nu^1$-homeomorphisms on Carnot groups
JO  - Eurasian mathematical journal
PY  - 2024
SP  - 82
EP  - 95
VL  - 15
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/EMJ_2024_15_4_a4/
LA  - en
ID  - EMJ_2024_15_4_a4
ER  - 
%0 Journal Article
%A S. V. Pavlov
%A S. K. Vodopyanov
%T Weak continuity of Jacobians of $W_\nu^1$-homeomorphisms on Carnot groups
%J Eurasian mathematical journal
%D 2024
%P 82-95
%V 15
%N 4
%U http://geodesic.mathdoc.fr/item/EMJ_2024_15_4_a4/
%G en
%F EMJ_2024_15_4_a4
S. V. Pavlov; S. K. Vodopyanov. Weak continuity of Jacobians of $W_\nu^1$-homeomorphisms on Carnot groups. Eurasian mathematical journal, Tome 15 (2024) no. 4, pp. 82-95. http://geodesic.mathdoc.fr/item/EMJ_2024_15_4_a4/

[1] J. M. Ball, “Convexity conditions and existence theorems in nonlinear elasticity”, Arch. Ration. Mech. Anal., 63 (1977), 337–403 | DOI | MR | Zbl

[2] R. Caccioppoli, “Funzioni pseudo-analitiche e rappresentazioni pseudo-conformi delle superficie riemanniane”, Ricerche Mat, 1953, no. 2, 104–127 | MR | Zbl

[3] A. P. Calderon, A. Zygmund, “On the existence of certain singular integrals”, Acta Mathematica, 88 (1952), 85–139 | DOI | MR | Zbl

[4] P. G. Ciarlet, Mathematical elasticity, v. I, Studies in Mathematics and its Applications, Three-dimensional elasticity, North-Holland, Amsterdam, 1988 | MR | Zbl

[5] G. B. Folland, E. M. Stein, Hardy spaces on homogeneous groups, Princeton Univ. Press, Princeton, 1982 | MR | Zbl

[6] F. W. Gehring, “The Carathéodory convergence theorem for quasiconformal mappings in space”, Ann. Acad. Sci. Fenn. Ser. A I, 336:11 (1963), 1–21 | MR

[7] M. Gromov, “Carnot-Carathéodory spaces seen from within”, Sub-Riemannian Geometry, ed. A. Bellaiche, Birkhäuser, Boston, 1996, 79-323 | DOI | MR | Zbl

[8] T. Hytönen, A. Kairema, “Systems of dyadic cubes in a doubling metric space”, Colloq. Math., 126:1 (2012), 1–33 | DOI | MR | Zbl

[9] T. Iwaniec, G. Martin, Geometric function theory and non-linear analysis, Oxford University Press, 2001 | MR

[10] M. Karmanova, S. Vodopyanov, “A coarea formula for smooth contact mappings of Carnot-Carathéodory spaces”, Acta Applicandae Mathematicae, 128:1 (2013), 67–111 | DOI | MR | Zbl

[11] A. Molchanova, S. Vodopyanov, “Injectivity almost everywhere and mappings with finite distortion in nonlinear elasticity”, Calc. Var, 59:17 (2019), 2–25 | MR

[12] C. B. Morrey, Multiple integrals in the calculus of variations, Springer Verlag, Berlin, 1966 | MR | Zbl

[13] S. Müller, “Higher integrability of determinants and weak convergence in $L_1$”, Journal für die reine und angewandte Mathematik, 412 (1990), 20–34 | MR | Zbl

[14] P. Pansu, “Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un”, Ann. of Math., 129:1 (1989), 1–60 | DOI | MR | Zbl

[15] Yu. G. Reshetnyak, Space mappings with bounded distortion, American Mathematical Society, 1989 | MR | Zbl

[16] E. Stein, “Note on the class $L\log L$”, Studia Mathematica, 32:3 (1969), 305–310 | DOI | MR | Zbl

[17] E. M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton University Press, Princeton, New Jersey, 1993 | MR | Zbl

[18] S. K. Vodopyanov, “P-differentiability on Carnot groups in different topologies and related topics”, Proceedings on Analysis and Geometry, Sobolev Institute Press, Novosibirsk, 2000, 603-670 | MR | Zbl

[19] S. K. Vodopyanov, “On the differentiability of mappings of Sobolev classes on the Carnot group”, Sb. Math., 194:6 (2003), 857–877 | DOI | MR

[20] S. K. Vodopyanov, “Closure of classes of mappings with bounded distortion on Carnot groups”, Siberian Adv. Math., 14:1 (2004), 84–125 | MR | Zbl

[21] S. K. Vodopyanov, “Foundations of the theory of mappings with bounded distortion on Carnot groups”, Contemporary Mathematics, 424, 2007, 303–344 | MR | Zbl

[22] S. K. Vodopyanov, S. V. Pavlov, “Functional properties of limits of Sobolev homeomorphisms with integrable distortion”, Journal of Mathematical Sciences, 286:3 (2024), 322–342 | MR | Zbl