@article{EMJ_2024_15_4_a3,
author = {V. G. Kurbatov},
title = {A discrete model of a transmission line and the {Faber} polynomials},
journal = {Eurasian mathematical journal},
pages = {66--81},
year = {2024},
volume = {15},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2024_15_4_a3/}
}
V. G. Kurbatov. A discrete model of a transmission line and the Faber polynomials. Eurasian mathematical journal, Tome 15 (2024) no. 4, pp. 66-81. http://geodesic.mathdoc.fr/item/EMJ_2024_15_4_a3/
[1] A. C. Antoulas, Approximation of large-scale dynamical systems, Advances in Design and Control, 6, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2005 | MR | Zbl
[2] J. Bartolomeo, M. He, “On Faber polynomials generated by an m-star”, Math. Comp, 62:205 (1994), 277–287 | MR | Zbl
[3] B. Beckermann, M. Crouzeix, “Faber polynomials of matrices for non-convex sets”, Jaen J. Approx, 6:2 (2014), 219–231 | MR | Zbl
[4] B. Beckermann, L. Reichel, “Error estimates and evaluation of matrix functions via the Faber transform”, SIAM J. Numer. Anal., 47:5 (2009), 3849–3883 | DOI | MR | Zbl
[5] A. G. Borisov, S. V. Shabanov, “Wave packet propagation by the Faber polynomial approximation in electrodynamics of passive media”, J. Comput. Phys., 216:1 (2006), 391–402 | DOI | MR | Zbl
[6] A. M. Bruckstein, T. Kailath, “Inverse scattering for discrete transmission-line models”, SIAM Review, 29:3 (1987), 359–389 | DOI | MR | Zbl
[7] A. C. Cangellaris, S. Pasha, J. L. Prince, M. Celik, “A new discrete transmission line model for passive model order reduction and macromodeling of high-speed interconnections”, IEEE Transactions on Advanced Packaging, 22 (1999), 356–364 | DOI
[8] J. P. Coleman, N. J. Myers, “The Faber polynomials for annular sectors”, Math. Comp., 64:209 (1995), 181–203 | DOI | MR | Zbl
[9] J. P. Coleman, R. A. Smith, “The Faber polynomials for circular sectors”, Math. Comp., 49:179 (1987), 231–241 | DOI | MR | Zbl
[10] J. W. Demmel, Applied numerical linear algebra, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1997 | MR | Zbl
[11] A. Dounavis, Xin Li, M. S. Nakhla, R. Achar, “Passive closed-form transmission-line model for general-purpose circuit simulators”, IEEE Transactions on Microwave Theory and Techniques, 47:12 (1999), 2450–2459 | DOI
[12] S. W. Ellacott, “Computation of Faber series with application to numerical polynomial approximation in the complex plane”, Math. Comp, 40:162 (1983), 575–587 | DOI | MR | Zbl
[13] D. Gaier, Lectures on complex approximation, Birkhäuser Boston, Inc., Boston, MA, 1987 | MR | Zbl
[14] L. García Ramos, O. Sète, R. Nabben, “Preconditioning the Helmholtz equation with the shifted Laplacian and Faber polynomials”, Electron. Trans. Numer. Anal., 2021, no. 54, 534–557 | MR | Zbl
[15] G. H. Golub, Ch. F. Van Loan, Matrix computations, Johns Hopkins Studies in the Mathematical Sciences, third edition, Johns Hopkins University Press, Baltimore, MD, 1996 | MR | Zbl
[16] M. Hasson, “Expansion of analytic functions of an operator in series of Faber polynomials”, Bull. Austral. Math. Soc., 56:2 (1997), 303–318 | DOI | MR | Zbl
[17] M. He, “The Faber polynomials for circular lunes”, Comput. Math. Appl, 30:3-6 (1995), 307–315 | DOI | MR | Zbl
[18] P. Henrici, Applied and computational complex analysis, v. 1, Pure and Applied Mathematics, Power series integration conformal mapping location of zeros, Wiley-Interscience [John Wiley Sons], New York–London–Sydney, 1974 | MR | Zbl
[19] P. Henrici, Applied and computational complex analysis, v. 3, Pure and Applied Mathematics, Discrete Fourier analysis Cauchy integrals construction of conformal maps univalent functions, Wiley-Interscience [John Wiley Sons], New York, 1986 | MR | Zbl
[20] N. J. Higham, Functions of matrices: theory and computation, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2008 | MR | Zbl
[21] R. A. Horn, Ch. R. Johnson, Topics in matrix analysis, Cambridge University Press, Cambridge, 1991 | MR | Zbl
[22] A. Houwe, S. Abbagari, M. Inc, G. Betchewe, S. Y. Doka, K. T. Crépin, K. S. Nisar, “Chirped solitons in discrete electrical transmission line”, Results in Physics, 18 (2020), 103188 | DOI
[23] A. I. Markushevich, Theory of functions of a complex variable, v. II, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1965 | MR
[24] A. I. Markushevich, Theory of functions of a complex variable, v. III, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1967 | MR | Zbl
[25] H. R. Mohebbi, A. H. Majedi, “Analysis of series-connected discrete Josephson transmission line”, IEEE Transac tions on Microwave Theory and Techniques, 57:8 (2009), 1865–1873 | DOI
[26] I. Moret, P. Novati, “The computation of functions of matrices by truncated Faber series”, Numer. Funct. Anal. Optim., 22:5-6 (2001), 697–719 | DOI | MR | Zbl
[27] I. Moret, P. Novati, “An interpolatory approximation of the matrix exponential based on Faber polynomials”, J. Comput. Appl. Math., 131:1-2 (2001), 361–380 | DOI | MR | Zbl
[28] I. Moret, P. Novati, “RD-rational approximations of the matrix exponential”, BIT, 44:3 (2004), 595–615 | DOI | MR | Zbl
[29] P. Novati, “A polynomial method based on Fejèr points for the computation of functions of unsymmetric matrices”, Appl. Numer. Math, 44:1-2 (2003), 201–224 | DOI | MR | Zbl
[30] V. I. Smirnov, N. A. Lebedev, Functions of a complex variable: Constructive theory, The M.I.T. Press, Cambridge, Mass, 1968 | MR
[31] G. Starke, R. S. Varga, “A hybrid Arnoldi-Faber iterative method for nonsymmetric systems of linear equations”, Numer. Math., 64:2 (1993), 213–240 | DOI | MR | Zbl
[32] P. K. Suetin, Series of Faber polynomials, Analytical Methods and Special Functions, 1, Gordon and Breach Science Publishers, Amsterdam, 1998 | MR | Zbl
[33] J. Vlach, K. Singhal, Computer methods for circuit analysis and design, Van Nostrand Reinhold Electrical/Computer Science and Engineering Series, second edition, Kluwer Academic Publishers, New York, 1993
[34] S. Wolfram, The Mathematica book, fifth edition, Wolfram Media, New York, 2003 | MR