@article{EMJ_2024_15_4_a2,
author = {A. A. Kalybay and A. M. Temirkhanova},
title = {New weighted {Hardy-type} inequalities for monotone functions},
journal = {Eurasian mathematical journal},
pages = {54--65},
year = {2024},
volume = {15},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2024_15_4_a2/}
}
A. A. Kalybay; A. M. Temirkhanova. New weighted Hardy-type inequalities for monotone functions. Eurasian mathematical journal, Tome 15 (2024) no. 4, pp. 54-65. http://geodesic.mathdoc.fr/item/EMJ_2024_15_4_a2/
[1] L. S. Arendarenko, R. Oinarov, L. E. Persson, “On the boundedness of some classes of integral operators in weighted Lebesgue spaces”, Eurasian Math. J., 3:1 (2012), 5–17 | MR | Zbl
[2] L. S. Arendarenko, R. Oinarov, L. E. Persson, “Some new Hardy-type integral inequalities on cones of monotone functions”, Oper. Theory Adv. Appl, 229 (2013), 77–89 | MR | Zbl
[3] S. Bloom, R. Kerman, “Weighted norm inequalities for operators of Hardy type”, Proc. Amer. Math. Soc, 113:1 (1991), 135–141 | DOI | MR | Zbl
[4] A. Gogatishvili, V. D. Stepanov, “Reduction theorems for weighted integral inequalities on the cone of monotone functions”, Russian Math. Surveys, 68:4 (2013), 597–664 | DOI | MR | Zbl
[5] A. Kalybay, “Boundedness of one class of integral operators from second order weighted Sobolev space to weighted Lebesgue space”, J. Funct. Spaces, 2022 | DOI | MR
[6] A. Kalybay, R. Oinarov, “Boundedness of Riemann-Liouville operator from weighted Sobolev space to weighted Lebesgue space”, Eurasian Math. J., 12:1 (2021), 39–48 | DOI | MR | Zbl
[7] A. Kalybay, S. Shalginbayeva, “Estimate of the best constant of discrete Hardy-type inequality with matrix operator satisfying the Oinarov condition”, Eurasian Math. J., 15:2 (2024), 42–47 | DOI | MR | Zbl
[8] A. Kufner, L. Maligranda, L. E. Persson, “The prehistory of the Hardy inequality”, Amer. Math. Monthly, 113:10 (2006), 715–732 | DOI | MR | Zbl
[9] A. Kufner, L. Maligranda, L. E. Persson, The Hardy inequality. About its history and some related results, Vydavatelský Servis, Pilsen, 2007 | MR | Zbl
[10] K. Kuliev, “On estimates for norms of some integral operators with Oinarov's kernel”, Eurasian Math. J., 13:3 (2022), 67–81 | DOI | MR | Zbl
[11] R. Oinarov, “Weighted inequalities for one class of integral operators”, Dokl. Math, 44:1 (1992), 291–293 | MR
[12] R. Oinarov, “Two-sided norm estimates for certain classes of integral operators”, Proc. Steklov Inst. Math, 204 (1994), 205–214 | MR
[13] R. Oinarov, “Boundedness and compactness of Volterra type integral operators”, Siberian Math. J, 48:5 (2007), 884–896 | DOI | MR | Zbl
[14] R. Oinarov, A. Temirkhanova, A. Kalybay, “Boundedness of one class of integral operators from $L_p$ to $L_q$ for $1
\infty$”, Ann.Funct. Anal, 14:65 (2023) | MR[15] E. Sawyer, “Boundedness of classical operators on classical Lorentz spaces”, Studia Math, 96:2 (1990), 145–158 | DOI | MR | Zbl
[16] A. Senouci, A. Zanou, “Some integral inequalities for quasimonotone functions in weighted variable exponent Lebesgue space with $0 p(x) 1$”, Eurasian Math. J., 11:4 (2020), 58–65 | DOI | MR | Zbl
[17] V. D. Stepanov, “Weighted inequalities of Hardy type for higher-order derivatives and their applications”, Dokl. Math, 38:2 (1989), 389–393 | MR | Zbl
[18] V. D. Stepanov, “Two-weighted estimates of Riemann-Liouville integrals”, Math. USSR-Izv, 36:3 (1991), 669–681 | DOI | MR | Zbl
[19] V. D. Stepanov, “Weighted inequalities of Hardy type for Riemann-Liouville fractional integrals”, Siberian Math. J, 31:3 (1990), 513–522 | DOI | MR | Zbl
[20] V. D. Stepanov, “Weighted norm inequalities of Hardy type for a class of integral operators”, J. London Math. Soc, 50:1 (1994), 105–120 | DOI | MR | Zbl