New weighted Hardy-type inequalities for monotone functions
Eurasian mathematical journal, Tome 15 (2024) no. 4, pp. 54-65 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The famous Hardy inequality was formulated in 1920 and finally proved in 1925. Since then, this inequality has been greatly developed. The first development was related to the consideration of more general weights. The next step was to use more general operators with different kernels instead of the Hardy operator. At present, there are many works devoted to Hardy-type inequalities with iterated operators. Motivated by important applications, all these generalizations of the Hardy inequality are studied not only on the cone of non-negative functions but also on the cone of monotone non-negative functions. In this paper, new Hardy-type inequalities are proved for operators with kernels that satisfy less restrictive conditions than those considered earlier. The presented inequalities have already been characterized for non-negative functions. In this paper, we continue this study but for monotone non-negative functions.
@article{EMJ_2024_15_4_a2,
     author = {A. A. Kalybay and A. M. Temirkhanova},
     title = {New weighted {Hardy-type} inequalities for monotone functions},
     journal = {Eurasian mathematical journal},
     pages = {54--65},
     year = {2024},
     volume = {15},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2024_15_4_a2/}
}
TY  - JOUR
AU  - A. A. Kalybay
AU  - A. M. Temirkhanova
TI  - New weighted Hardy-type inequalities for monotone functions
JO  - Eurasian mathematical journal
PY  - 2024
SP  - 54
EP  - 65
VL  - 15
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/EMJ_2024_15_4_a2/
LA  - en
ID  - EMJ_2024_15_4_a2
ER  - 
%0 Journal Article
%A A. A. Kalybay
%A A. M. Temirkhanova
%T New weighted Hardy-type inequalities for monotone functions
%J Eurasian mathematical journal
%D 2024
%P 54-65
%V 15
%N 4
%U http://geodesic.mathdoc.fr/item/EMJ_2024_15_4_a2/
%G en
%F EMJ_2024_15_4_a2
A. A. Kalybay; A. M. Temirkhanova. New weighted Hardy-type inequalities for monotone functions. Eurasian mathematical journal, Tome 15 (2024) no. 4, pp. 54-65. http://geodesic.mathdoc.fr/item/EMJ_2024_15_4_a2/

[1] L. S. Arendarenko, R. Oinarov, L. E. Persson, “On the boundedness of some classes of integral operators in weighted Lebesgue spaces”, Eurasian Math. J., 3:1 (2012), 5–17 | MR | Zbl

[2] L. S. Arendarenko, R. Oinarov, L. E. Persson, “Some new Hardy-type integral inequalities on cones of monotone functions”, Oper. Theory Adv. Appl, 229 (2013), 77–89 | MR | Zbl

[3] S. Bloom, R. Kerman, “Weighted norm inequalities for operators of Hardy type”, Proc. Amer. Math. Soc, 113:1 (1991), 135–141 | DOI | MR | Zbl

[4] A. Gogatishvili, V. D. Stepanov, “Reduction theorems for weighted integral inequalities on the cone of monotone functions”, Russian Math. Surveys, 68:4 (2013), 597–664 | DOI | MR | Zbl

[5] A. Kalybay, “Boundedness of one class of integral operators from second order weighted Sobolev space to weighted Lebesgue space”, J. Funct. Spaces, 2022 | DOI | MR

[6] A. Kalybay, R. Oinarov, “Boundedness of Riemann-Liouville operator from weighted Sobolev space to weighted Lebesgue space”, Eurasian Math. J., 12:1 (2021), 39–48 | DOI | MR | Zbl

[7] A. Kalybay, S. Shalginbayeva, “Estimate of the best constant of discrete Hardy-type inequality with matrix operator satisfying the Oinarov condition”, Eurasian Math. J., 15:2 (2024), 42–47 | DOI | MR | Zbl

[8] A. Kufner, L. Maligranda, L. E. Persson, “The prehistory of the Hardy inequality”, Amer. Math. Monthly, 113:10 (2006), 715–732 | DOI | MR | Zbl

[9] A. Kufner, L. Maligranda, L. E. Persson, The Hardy inequality. About its history and some related results, Vydavatelský Servis, Pilsen, 2007 | MR | Zbl

[10] K. Kuliev, “On estimates for norms of some integral operators with Oinarov's kernel”, Eurasian Math. J., 13:3 (2022), 67–81 | DOI | MR | Zbl

[11] R. Oinarov, “Weighted inequalities for one class of integral operators”, Dokl. Math, 44:1 (1992), 291–293 | MR

[12] R. Oinarov, “Two-sided norm estimates for certain classes of integral operators”, Proc. Steklov Inst. Math, 204 (1994), 205–214 | MR

[13] R. Oinarov, “Boundedness and compactness of Volterra type integral operators”, Siberian Math. J, 48:5 (2007), 884–896 | DOI | MR | Zbl

[14] R. Oinarov, A. Temirkhanova, A. Kalybay, “Boundedness of one class of integral operators from $L_p$ to $L_q$ for $1

\infty$”, Ann.Funct. Anal, 14:65 (2023) | MR

[15] E. Sawyer, “Boundedness of classical operators on classical Lorentz spaces”, Studia Math, 96:2 (1990), 145–158 | DOI | MR | Zbl

[16] A. Senouci, A. Zanou, “Some integral inequalities for quasimonotone functions in weighted variable exponent Lebesgue space with $0 p(x) 1$”, Eurasian Math. J., 11:4 (2020), 58–65 | DOI | MR | Zbl

[17] V. D. Stepanov, “Weighted inequalities of Hardy type for higher-order derivatives and their applications”, Dokl. Math, 38:2 (1989), 389–393 | MR | Zbl

[18] V. D. Stepanov, “Two-weighted estimates of Riemann-Liouville integrals”, Math. USSR-Izv, 36:3 (1991), 669–681 | DOI | MR | Zbl

[19] V. D. Stepanov, “Weighted inequalities of Hardy type for Riemann-Liouville fractional integrals”, Siberian Math. J, 31:3 (1990), 513–522 | DOI | MR | Zbl

[20] V. D. Stepanov, “Weighted norm inequalities of Hardy type for a class of integral operators”, J. London Math. Soc, 50:1 (1994), 105–120 | DOI | MR | Zbl