@article{EMJ_2024_15_4_a1,
author = {O. S. Balashov and A. V. Faminskii},
title = {On direct and inverse problems for systems of odd-order quasilinear evolution equations},
journal = {Eurasian mathematical journal},
pages = {33--53},
year = {2024},
volume = {15},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2024_15_4_a1/}
}
TY - JOUR AU - O. S. Balashov AU - A. V. Faminskii TI - On direct and inverse problems for systems of odd-order quasilinear evolution equations JO - Eurasian mathematical journal PY - 2024 SP - 33 EP - 53 VL - 15 IS - 4 UR - http://geodesic.mathdoc.fr/item/EMJ_2024_15_4_a1/ LA - en ID - EMJ_2024_15_4_a1 ER -
O. S. Balashov; A. V. Faminskii. On direct and inverse problems for systems of odd-order quasilinear evolution equations. Eurasian mathematical journal, Tome 15 (2024) no. 4, pp. 33-53. http://geodesic.mathdoc.fr/item/EMJ_2024_15_4_a1/
[1] R. D. Akhmetkaliyeva, T. D. Mukasheva, K. N. Ospanov, “Correct and coercive solvability conditions for a degenerate high order differential equation”, Eurasian Math. J., 14:4 (2023), 9–14 | DOI | MR | Zbl
[2] O. V. Besov, V. P. Il'in, S. M. Nikol'skii, Integral representation of functions and embedding theorems, J. Wiley, 1978 | MR
[3] E. Bisognin, V. Bisognin, G. P. Menzala, “Asymptotic behavior in time of of the solutions of a coupled system of KdV equations”, Funkcialaj Ekvacioj, 40 (1997), 353–370 | MR | Zbl
[4] E. Bisognin, V. Bisognin, G. P. Menzala, “Exponential stabilization of a coupled system of Korteweg-de Vries with localized damping”, Adv. Differential Equ, 8 (2003), 443–469 | MR | Zbl
[5] J. L. Bona, J. Cohen, G. Wang, “Global well-posedness for a system of KdV-type equations with coupled quadratic nonlinearities”, Nagoya Math. J., 215 (2014), 67–149 | DOI | MR | Zbl
[6] J. L. Bona, Z. Grulić, H. Kalish, “A KdV-type Boussinesq system: from the energy level to analytic spaces”, Discr. Cont. Dyn. Syst., 26:4 (2010), 1121–1139 | DOI | MR | Zbl
[7] J. Bona, G. Ponce, J. C. Saut, M. Tom, “A model system for strong interactions between internal solitary waves”, Comm. Math. Phys., 143 (1992), 287–313 | DOI | MR | Zbl
[8] A. V. Faminskii, “Controllability problems for the Korteweg-de Vries equation with integral overdetermination”, Differential Equ, 55:1 (2019), 1–12 | DOI | MR
[9] A. V. Faminskii, “Odd-order quasilinear evolution equations with general nonlinearity on bounded intervals”, Lobachevskii J. Math., 42:5 (2021), 875–888 | DOI | MR | Zbl
[10] A. V. Faminskii, “On inverse problems for odd-order quasilinear evolution equations with general nonlinearity”, J. Math. Sci, 271:3 (2023), 281–299 | DOI | MR | Zbl
[11] A. V. Faminskii, N. A. Larkin, “Initial-boundary value problems for quasilinear dispersive equations posed on a bounded interval”, Electron. J. Differential Equ, 2010, no. 1, 1–20 | MR
[12] A. V. Faminskii, E. V. Martynov, “Inverse problems for the higher order nonlinear Schrödinger equation”, J. Math. Sci., 274:4 (2023), 475–492 | DOI | MR | Zbl
[13] J. A. Gear, R. Grimshaw, “Weak and strong interactions between internal solitary waves”, Stud. Appl. Math., 70:3 (1984), 235–238 | DOI | MR
[14] U. A. Hoitmetov, “Integration of the loaded general Korteweg-de Vries equation in tne class of rapidly decreasing complex-valued functions”, Eurasian Math. J., 13:2 (2022), 43–54 | DOI | MR | Zbl
[15] F. Linares, M. Panthee, “On the Cauchy problem for a coupled system of KdV equations”, Commun. Pure Appl. Anal, 3 (2004), 417–431 | DOI | MR | Zbl
[16] S. Lu, M. Chen, Q. Lui, “A nonlinear inverse problem of the Korteweg-de Vries equation”, Bull. Math. Sci., 9:3 (2019), 1950014 | DOI | MR | Zbl
[17] A. J. Majda, J. A. Biello, “The nonlinear interaction of barotropic and equatorial baroclinic Rossby waves”, J. Atmospheric Sci, 60 (2003), 1809–1821 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR
[18] J. Marshall, J. Cohen, G. Wang, “On strongly interacting integral solitary waves”, J. Fourier Anal. Appl, 2 (1996), 507–517 | MR | Zbl
[19] C. P. Massarolo, A. F. Pazoto, “Uniform stabilization of a coupled system of the Kortrweg-de Vries equations as singular limit of the Kuramoto-Sivashinsky equations”, Differential Integral Equ, 22 (2009), 53–68 | MR | Zbl
[20] C. P. Massarolo, G. P. Menzala, A. F. Pazoto, “A coupled system of Korteweg-de Vries equation as singular limit of the Kuramoto-Sivashinsky equation”, Adv. Differential Equ, 12 (2007), 541–572 | MR | Zbl
[21] S. Micu, J. H. Ortega, A. F. Pazoto, “On the controllability of a coupled system of two Korteweg-de Vries equations”, Comm. Contemp. Math., 11:5 (2009), 799–827 | DOI | MR | Zbl
[22] D. Nina, A. F. Pazoto, L. Rosier, “Global stabilization of a coupled system of two generalized Korteweg-de Vries equations posed on a finite domain”, Math. Control Relat. Fields, 1:3 (2011), 353–389 | DOI | MR | Zbl
[23] A. F. Pazoto, L. Rosier, “Stabilization of a Boussinesq system of KdV-type”, Systems Control Lett., 57 (2008), 595–601 | DOI | MR | Zbl
[24] A. I. Prilepko, D. G. Orlovsky, I. A. Vasin, Methods for solving inverse problems in mathematical physics, Marcel Dekker Inc., New York-Basel, 1999 | MR
[25] J. C. Saut, L. Xu, “Long time existence for a strongly dispersive Boussinesq system”, SIAM J. Math. Anal., 52:3 (2020), 2803–2848 | DOI | MR | Zbl