@article{EMJ_2024_15_4_a0,
author = {E. G. Bakhtigareeva and M. L. Goldman},
title = {Order-sharp estimates for decreasing rearrangements of convolutions},
journal = {Eurasian mathematical journal},
pages = {8--32},
year = {2024},
volume = {15},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/EMJ_2024_15_4_a0/}
}
E. G. Bakhtigareeva; M. L. Goldman. Order-sharp estimates for decreasing rearrangements of convolutions. Eurasian mathematical journal, Tome 15 (2024) no. 4, pp. 8-32. http://geodesic.mathdoc.fr/item/EMJ_2024_15_4_a0/
[1] C. Aykol, A. Gogatishvili, V. Guliyev, Associated spaces on generalized classical Lorentz space $G\Lambda_{p,\psi;\varphi}$, 2013, 11 pp., arXiv: 1310.1169
[2] A. N. Bashirova, A. K. Kalidolday, E. D. Nursultanov, “Interpolation methods for anisotropic net spaces”, Eurasian Math. J., 15:2 (2024), 33–41 | DOI | MR | Zbl
[3] C. Bennett, R. Sharpley, Interpolation of operators, Pure Appl. Math., 129, Acad. Press, Boston, 1988 | MR | Zbl
[4] N. A. Bokayev, A. Gogatishvili, A. N. Abek, “On estimates of non-increasing rearrangement of generalized fractional maximal function”, Eurasian Math. J., 14:2 (2023), 13–23 | DOI | MR | Zbl
[5] N. A. Bokayev, M. L. Goldman, G. Zh. Karshygina, “Cones of functions with monotonicity conditions for generalized Bessel and Riesz potentials”, Math. Notes, 104:3 (2018), 356–373 | MR | Zbl
[6] N. A. Bokayev, M. L. Goldman, G. Zh. Karshygina, “Criteria for embeddings of generalized Bessel and Riesz poten tial spaces in rearrangement invariant spaces”, Eurasian Math. Journal, 10:2 (2019), 8–29 | DOI | MR | Zbl
[7] G. M. Fikhtengolts, Course of differential and integral calculus, v. 3, Fizmatlit, M., 1963 (in Russian)
[8] M. L. Goldman, “On optimal embedding of generalized Bessel and Riesz potentials”, Proc. Steklov Inst. Math, 269 (2010), 101–123 | DOI | MR
[9] M. L. Goldman, “On the cones of rearrangements for generalized Bessel and Riesz potentials”, Complex Variables and Elliptic Equations, 55:8-10 (2010), 817–832 | DOI | MR | Zbl
[10] M. L. Goldman, “Estimates for decreasing rearrangements of convolutions and coverings of cones”, Journal of mathematical sciences, 266 (2022), 944–958 | DOI | MR | Zbl
[11] A. K. Kalidolday, E. D. Nursultanov, “Marcinkiewicz's interpolation theorem for linear operators on net spaces”, Eurasian Math. J., 13:4 (2022), 61–69 | DOI | MR | Zbl
[12] S. G. Krein, Yu. I. Petunin, E. M. Semenov, Interpolation of linear operators, Amer. Math. Soc., Providence, 1981 | MR
[13] V. G. Maz'ya, Sobolev spaces, Springer-Verlag, Berlin, 1985 | MR | Zbl
[14] S. M. Nikol'skii, Approximation of functions of several variables and imbedding theorems, Springer-Verlag, Berlin, 1975 | MR | Zbl
[15] E. Nursultanov, S. Tikhonov, “Convolution inequalities in Lorentz spaces”, J. Fourier Anal. and Appl., 17 (2011), 486–505 | DOI | MR | Zbl
[16] R. O'Neil, “Convolution operators and $L(p, q)$ spaces”, Duke Math. J., 1979, 129–142 | MR
[17] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, N.J., 1970 | MR | Zbl