Order-sharp estimates for decreasing rearrangements of convolutions
Eurasian mathematical journal, Tome 15 (2024) no. 4, pp. 8-32 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we study estimates for convolutions on some classes of measurable, positive and radial symmetrical functions. On this base we prove then order-sharp estimates for decreasing and symmetrical rearrangements of convolutions and for weighted mean values of rearrangements. These estimates give, in particular, a reversal of the well-known inequalities for convolutions proved by R. OвЂTMNeil.
@article{EMJ_2024_15_4_a0,
     author = {E. G. Bakhtigareeva and M. L. Goldman},
     title = {Order-sharp estimates for decreasing rearrangements of convolutions},
     journal = {Eurasian mathematical journal},
     pages = {8--32},
     year = {2024},
     volume = {15},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2024_15_4_a0/}
}
TY  - JOUR
AU  - E. G. Bakhtigareeva
AU  - M. L. Goldman
TI  - Order-sharp estimates for decreasing rearrangements of convolutions
JO  - Eurasian mathematical journal
PY  - 2024
SP  - 8
EP  - 32
VL  - 15
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/EMJ_2024_15_4_a0/
LA  - en
ID  - EMJ_2024_15_4_a0
ER  - 
%0 Journal Article
%A E. G. Bakhtigareeva
%A M. L. Goldman
%T Order-sharp estimates for decreasing rearrangements of convolutions
%J Eurasian mathematical journal
%D 2024
%P 8-32
%V 15
%N 4
%U http://geodesic.mathdoc.fr/item/EMJ_2024_15_4_a0/
%G en
%F EMJ_2024_15_4_a0
E. G. Bakhtigareeva; M. L. Goldman. Order-sharp estimates for decreasing rearrangements of convolutions. Eurasian mathematical journal, Tome 15 (2024) no. 4, pp. 8-32. http://geodesic.mathdoc.fr/item/EMJ_2024_15_4_a0/

[1] C. Aykol, A. Gogatishvili, V. Guliyev, Associated spaces on generalized classical Lorentz space $G\Lambda_{p,\psi;\varphi}$, 2013, 11 pp., arXiv: 1310.1169

[2] A. N. Bashirova, A. K. Kalidolday, E. D. Nursultanov, “Interpolation methods for anisotropic net spaces”, Eurasian Math. J., 15:2 (2024), 33–41 | DOI | MR | Zbl

[3] C. Bennett, R. Sharpley, Interpolation of operators, Pure Appl. Math., 129, Acad. Press, Boston, 1988 | MR | Zbl

[4] N. A. Bokayev, A. Gogatishvili, A. N. Abek, “On estimates of non-increasing rearrangement of generalized fractional maximal function”, Eurasian Math. J., 14:2 (2023), 13–23 | DOI | MR | Zbl

[5] N. A. Bokayev, M. L. Goldman, G. Zh. Karshygina, “Cones of functions with monotonicity conditions for generalized Bessel and Riesz potentials”, Math. Notes, 104:3 (2018), 356–373 | MR | Zbl

[6] N. A. Bokayev, M. L. Goldman, G. Zh. Karshygina, “Criteria for embeddings of generalized Bessel and Riesz poten tial spaces in rearrangement invariant spaces”, Eurasian Math. Journal, 10:2 (2019), 8–29 | DOI | MR | Zbl

[7] G. M. Fikhtengolts, Course of differential and integral calculus, v. 3, Fizmatlit, M., 1963 (in Russian)

[8] M. L. Goldman, “On optimal embedding of generalized Bessel and Riesz potentials”, Proc. Steklov Inst. Math, 269 (2010), 101–123 | DOI | MR

[9] M. L. Goldman, “On the cones of rearrangements for generalized Bessel and Riesz potentials”, Complex Variables and Elliptic Equations, 55:8-10 (2010), 817–832 | DOI | MR | Zbl

[10] M. L. Goldman, “Estimates for decreasing rearrangements of convolutions and coverings of cones”, Journal of mathematical sciences, 266 (2022), 944–958 | DOI | MR | Zbl

[11] A. K. Kalidolday, E. D. Nursultanov, “Marcinkiewicz's interpolation theorem for linear operators on net spaces”, Eurasian Math. J., 13:4 (2022), 61–69 | DOI | MR | Zbl

[12] S. G. Krein, Yu. I. Petunin, E. M. Semenov, Interpolation of linear operators, Amer. Math. Soc., Providence, 1981 | MR

[13] V. G. Maz'ya, Sobolev spaces, Springer-Verlag, Berlin, 1985 | MR | Zbl

[14] S. M. Nikol'skii, Approximation of functions of several variables and imbedding theorems, Springer-Verlag, Berlin, 1975 | MR | Zbl

[15] E. Nursultanov, S. Tikhonov, “Convolution inequalities in Lorentz spaces”, J. Fourier Anal. and Appl., 17 (2011), 486–505 | DOI | MR | Zbl

[16] R. O'Neil, “Convolution operators and $L(p, q)$ spaces”, Duke Math. J., 1979, 129–142 | MR

[17] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, N.J., 1970 | MR | Zbl