Kolmogorov widths of anisotropic function classes and finite-dimensional balls
Eurasian mathematical journal, Tome 15 (2024) no. 3, pp. 88-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we obtain order estimates for the Kolmogorov widths of anisotropic periodic Sobolev and Nikol'skii classes, as well asanisotropic finite-dimensional balls.
@article{EMJ_2024_15_3_a8,
     author = {A. A. Vasil'eva},
     title = {Kolmogorov widths of anisotropic function classes and finite-dimensional balls},
     journal = {Eurasian mathematical journal},
     pages = {88--93},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2024_15_3_a8/}
}
TY  - JOUR
AU  - A. A. Vasil'eva
TI  - Kolmogorov widths of anisotropic function classes and finite-dimensional balls
JO  - Eurasian mathematical journal
PY  - 2024
SP  - 88
EP  - 93
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2024_15_3_a8/
LA  - en
ID  - EMJ_2024_15_3_a8
ER  - 
%0 Journal Article
%A A. A. Vasil'eva
%T Kolmogorov widths of anisotropic function classes and finite-dimensional balls
%J Eurasian mathematical journal
%D 2024
%P 88-93
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2024_15_3_a8/
%G en
%F EMJ_2024_15_3_a8
A. A. Vasil'eva. Kolmogorov widths of anisotropic function classes and finite-dimensional balls. Eurasian mathematical journal, Tome 15 (2024) no. 3, pp. 88-93. http://geodesic.mathdoc.fr/item/EMJ_2024_15_3_a8/

[1] G. A. Akishev, “Estimates for Kolmogorov widths of the Nikol'skii–Besov–Amanov classes in the Lorentz space”, Proc. Steklov Inst. Math. (Suppl.), 296, suppl. 1 (2017), 1–12 | DOI

[2] G. Akishev, “Estimates for the Kolmogorov width of classes of small smoothness in Lorentz space”, XXIV International Conference Mathematics. Economics. Education. IX International symposium Fourier series and their applications. International Conference on stochastic methods. Materials (Rostov-na-Donu, 2016), 99 (in Russian)

[3] G. Akishev, “Estimates of M-term approximations of functions of several variables in the Lorentz space by a constructive method”, Eurasian Math. J., 15:2 (2024), 8–32 | DOI

[4] S. Artamonov, K. Runovski, H. J. Schmeisser, “Methods of trigonometric approximation and generalized smoothness II”, Eurasian Math. J., 13:4 (2022) | DOI

[5] S. B. Babadzhanov, V. M. Tikhomirov, “Diameters of a function class in an $L_p$-space ($p\geqslant 1$)”, Izv. Akad. Nauk UzSSR Ser. Fiz. Mat. Nauk, 11:2 (1967), 24–30

[6] S. Dirksen, T. Ullrich, “Gelfand numbers related to structured sparsity and Besov space embeddings with small mixed smoothness”, J. Compl., 48 (2018), 69–102 | DOI

[7] E. M. Galeev, “Kolmogorov widths in the space $\widetilde{L}_q$ of the classes $\widetilde{W}_p^{\overline{\alpha}}$ and $\widetilde{H}_p^{\overline{\alpha}}$ of periodic functions of several variables”, Math. USSR-Izv., 27:2 (1986), 219–237 | DOI

[8] E. M. Galeev, “Estimates for widths, in the sense of Kolmogorov, of classes of periodic functions of several variables with small-order smoothness”, Vestnik Moskov. Univ. Ser. I Mat. Mekh., 1987, no. 1, 26–30 (in Russian)

[9] E. M. Galeev, “Kolmogorov widths of classes of periodic functions of one and several variables”, Math. USSR-Izv., 36:2 (1991), 435–448 | DOI

[10] E. M. Galeev, “Kolmogorov $n$-width of some finite-dimensional sets in a mixed measure”, Math. Notes, 58:1 (1995), 774–778 | DOI

[11] E. M. Galeev, “Widths of functional classes and finite-dimensional sets”, Vladikavkaz. Mat. Zh., 13:2 (2011), 3–14

[12] Sov. Math. Dokl., 30 (1984), 200–204

[13] E. D. Gluskin, “On some nite-dimensional problems of the theory of diameters”, Vestn. Leningr. Univ., 13:3 (1981), 5–10 (in Russian)

[14] E. D. Gluskin, “Norms of random matrices and diameters of finite-dimensional sets”, Math. USSR-Sb, 48:1 (1984), 173–182 | DOI

[15] R. S. Ismagilov, “Diameters of sets in normed linear spaces and the approximation of functions by trigonometric polynomials”, Russian Math. Surveys, 29:3 (1974), 169–186 | DOI

[16] A. D. Izaak, “Kolmogorov widths in finite-dimensional spaces with mixed norms”, Math. Notes, 55:1 (1994), 30–36 | DOI

[17] A. D. Izaak, “Widths of Holder–Nikol'skij classes and finite-dimensional subsets in spaces with mixed norm”, Math. Notes, 59:3 (1996), 328–330 | DOI

[18] B. S. Kashin, “The diameters of octahedra”, Usp. Mat. Nauk, 30:4 (1975), 251–252 (in Russian)

[19] B. S. Kashin, “The widths of certain finite-dimensional sets and classes of smooth functions”, Math. USSR-Izv., 11:2 (1977), 317–333 | DOI

[20] B. S. Kashin, “Widths of Sobolev classes of small-order smoothness”, Moscow Univ. Math. Bull., 36:5 (1981), 62–66

[21] Yu. I. Makovoz, “On a method of estimation from below of diameters of sets in Banach spaces”, Math. USSR-Sb., 16:1 (1972), 139–146 | DOI

[22] Yu. V. Malykhin, K. S. Ryutin, “The product of octahedra is badly approximated in the $l_{2,1}$-metric”, Math. Notes, 101:1 (2017), 94–99 | DOI

[23] A. Pietsch, “$s$-numbers of operators in Banach space”, Studia Math., 51 (1974), 201–223 | DOI

[24] Soviet Math. Dokl.

[25] V. N. Temlyakov, “On the approximation of periodic functions of several variables with bounded mixed difference”, Soviet Math. Dokl., 22 (1980), 131–135

[26] V. N. Temlyakov, “Widths of some classes of functions of several variables”, Soviet Math Dokl., 26 (1982), 619–622

[27] V. N. Temlyakov, “Approximation of periodic functions of several variables by trigonometric polynomials, and widths of some classes of functions”, Math. USSR-Izv., 27:2 (1986), 285–322 | DOI

[28] V. N. Temlyakov, “Approximations of functions with bounded mixed derivative”, Proc. Steklov Inst. Math., 178 (1989), 11–21

[29] V. N. Temlyakov, “Approximation of functions with a bounded mixed difference by trigonometric polynomials, and the widths of some classes of functions”, Math. USSR-Izv., 20:1 (1983), 173–187 | DOI

[30] V. Temlyakov, Multivariate approximation, Cambridge Univ. Press, 2018, 534 pp.

[31] Encycl. Math. Sci., 14 (1990), 93–243

[32] A. A. Vasil'eva, “Kolmogorov and linear widths of the weighted Besov classes with singularity at the origin”, J. Approx. Theory, 167 (2013), 1–41 | DOI

[33] A. A. Vasil'eva, “Kolmogorov widths of the intersection of a finite family of Sobolev classes”, Eurasian Math. J., 13:4 (2022), 88–93 | DOI

[34] A. A. Vasil'eva, “Kolmogorov widths of an intersection of a finite family of Sobolev classes”, Izv. Math., 88:1 (2024), 18–42 | DOI

[35] A. A. Vasil'eva, “Estimates for the Kolmogorov widths of an intersection of two balls in a mixed norm”, Sb. Math., 215:1 (2024), 74–89 | DOI