Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2024_15_3_a2, author = {Sh. A. Balgimbayeva and D. B. Bazarkhanov}, title = {Optimal cubature formulas for {Morrey} type function classes on multidimensional torus}, journal = {Eurasian mathematical journal}, pages = {25--37}, publisher = {mathdoc}, volume = {15}, number = {3}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2024_15_3_a2/} }
TY - JOUR AU - Sh. A. Balgimbayeva AU - D. B. Bazarkhanov TI - Optimal cubature formulas for Morrey type function classes on multidimensional torus JO - Eurasian mathematical journal PY - 2024 SP - 25 EP - 37 VL - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2024_15_3_a2/ LA - en ID - EMJ_2024_15_3_a2 ER -
%0 Journal Article %A Sh. A. Balgimbayeva %A D. B. Bazarkhanov %T Optimal cubature formulas for Morrey type function classes on multidimensional torus %J Eurasian mathematical journal %D 2024 %P 25-37 %V 15 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/EMJ_2024_15_3_a2/ %G en %F EMJ_2024_15_3_a2
Sh. A. Balgimbayeva; D. B. Bazarkhanov. Optimal cubature formulas for Morrey type function classes on multidimensional torus. Eurasian mathematical journal, Tome 15 (2024) no. 3, pp. 25-37. http://geodesic.mathdoc.fr/item/EMJ_2024_15_3_a2/
[1] Z. Baituyakova, W. Sickel, “Strong summability of Fourier series and generalized Morrey spaces”, Analysis Math, 43:3 (2017), 371–414 | DOI
[2] N. S. Bakhvalov, “A lower bound for the asymptotic characteristics of classes of functions with dominating mixed derivative”, Math. Notes, 12 (1972), 833–838 | DOI
[3] D. B. Bazarkhanov, “Optimal cubature formulas on classes of periodic functions in several variables”, Proc. Steklov Inst. Math., 312 (2021), 16–36 | DOI
[4] D. B. Bazarkhanov, “Representations and characterization of some function spaces”, Math. J. Almaty, 12:3 (45) (2012), 41–49
[5] V. I. Burenkov, D. J. Jozeph, “Inequalities for trigonometric polynomials in periodic Morrey spaces”, Eurasian Math. J., 15:2 (2024), 92–100 | DOI
[6] V. A. Bykovskii, “Extremal cubature formulas for anisotropic classes”, Dal'nevost. Mat. Zh., 19 (2019), 10–19
[7] Dinh Dung, V. N. Temlyakov, T. Ullrich, Hyperbolic cross approximation, Birkhauser; Springer, 2018
[8] M. Frazier, B. Jawerth, “A discrete transform and decompositions of distribution spaces”, J. Funct. Anal., 93 (1990), 34–170 | DOI
[9] D. Haroske, L. Skrzypczak, “Entropy numbers of compact embeddings of smoothness Morrey spaces on bounded domains”, J. Approx. Theory, 256 (2020), 105424 | DOI
[10] D. Haroske, H. Triebel, Morrey smoothness spaces: a new approach, 20 Oct 2021, arXiv: 2110.10609v1 [math.FA]
[11] V. K. Nguyen, M. Ullrich, T. Ullrich, “Change of variable in spaces of mixed smoothness and numerical integration of multivariate functions on the unit cube”, Constr. Approx, 46 (2017), 69–108 | DOI
[12] M. Sautbekova, W. Sickel, “Strong summability of Fourier series and Morrey spaces”, Analysis Math., 40:1 (2014), 31–62 | DOI
[13] H. J. Schmeisser, H. Triebel, Topics in Fourier analysis and function spaces, Wiley, 1987
[14] M. A. Senouci, “Boundedness of the generalized Riemann Liouville operator in local Morrey type spaces”, Eurasian Math. J., 14:4 (2021), 63–68 | DOI
[15] W. Sickel, “Smoothness spaces related to Morrey spaces a survey I”, Eurasian Math. J., 3:3 (2012), 110–149
[16] W. Sickel, “Smoothness spaces related to Morrey spaces a survey II”, Eurasian Math. J., 4:1 (2013), 82–124
[17] Cubature formulas and modern analysis: An Introduction, Gordon and Breach Sci. Publ., Montreux, 1992
[18] E. M. Stein, G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, Princeton, N-J, 1971
[19] V. N. Temlyakov, Approximation of periodic functions, Nova Science Publ., N-Y, 1993
[20] V. N. Temlyakov, Multivariate approximation, CUP, Cambridge, 2018
[21] M. Ullrich, T. Ullrich, “The role of Frolov's cubature formula for functions with bounded mixed derivative”, SIAM J. Numer. Anal., 54 (2016), 969–993 | DOI
[22] D. Yang, W. Yuan, “Relations among Besov type spaces, Triebel-Lizorkin type spaces and generalized Carleson measure spaces”, Applicable Analysis, 92:3 (2013), 549–561 | DOI
[23] W. Yuan, D. D. Haroske, S. D. Moura, L. Skrzypczak, D. Yang, “Limiting embeddings in smoothness Morrey spaces, continuity envelopes and applications”, J. Approx. Theory, 192 (2015), 306–335 | DOI
[24] W. Yuan, W. Sickel, D. Yang, Morrey and Campanato meet Besov, Lizorkin and Triebel, Lecture Notes in Math., 2005, Springer, Berlin, 2010 | DOI