Optimal cubature formulas for Morrey type function classes on multidimensional torus
Eurasian mathematical journal, Tome 15 (2024) no. 3, pp. 25-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, we establish estimates, sharp in order, for the error of optimal cubature formulas for the smoothness spaces $B_{pq}^{s\tau}(\mathbb{T}^m)$ of Nikol'skii–Besov type and $F_{pq}^{s\tau}(\mathbb{T}^m)$ of Lizorkin–Triebel type, both related to Morrey spaces, on multidimensional torus, for some range of the parameters $s, p, q, \tau$ ($0$, $1\leqslant p$, $q\leqslant\infty$, $0\leqslant\tau\leqslant1/p$). In particular, we obtain those estimates for the isotropic Lizorkin–Triebel function spaces $F^s_{\infty q}(\mathbb{T}^m)$ .
@article{EMJ_2024_15_3_a2,
     author = {Sh. A. Balgimbayeva and D. B. Bazarkhanov},
     title = {Optimal cubature formulas for {Morrey} type function classes on multidimensional torus},
     journal = {Eurasian mathematical journal},
     pages = {25--37},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2024_15_3_a2/}
}
TY  - JOUR
AU  - Sh. A. Balgimbayeva
AU  - D. B. Bazarkhanov
TI  - Optimal cubature formulas for Morrey type function classes on multidimensional torus
JO  - Eurasian mathematical journal
PY  - 2024
SP  - 25
EP  - 37
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2024_15_3_a2/
LA  - en
ID  - EMJ_2024_15_3_a2
ER  - 
%0 Journal Article
%A Sh. A. Balgimbayeva
%A D. B. Bazarkhanov
%T Optimal cubature formulas for Morrey type function classes on multidimensional torus
%J Eurasian mathematical journal
%D 2024
%P 25-37
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2024_15_3_a2/
%G en
%F EMJ_2024_15_3_a2
Sh. A. Balgimbayeva; D. B. Bazarkhanov. Optimal cubature formulas for Morrey type function classes on multidimensional torus. Eurasian mathematical journal, Tome 15 (2024) no. 3, pp. 25-37. http://geodesic.mathdoc.fr/item/EMJ_2024_15_3_a2/

[1] Z. Baituyakova, W. Sickel, “Strong summability of Fourier series and generalized Morrey spaces”, Analysis Math, 43:3 (2017), 371–414 | DOI

[2] N. S. Bakhvalov, “A lower bound for the asymptotic characteristics of classes of functions with dominating mixed derivative”, Math. Notes, 12 (1972), 833–838 | DOI

[3] D. B. Bazarkhanov, “Optimal cubature formulas on classes of periodic functions in several variables”, Proc. Steklov Inst. Math., 312 (2021), 16–36 | DOI

[4] D. B. Bazarkhanov, “Representations and characterization of some function spaces”, Math. J. Almaty, 12:3 (45) (2012), 41–49

[5] V. I. Burenkov, D. J. Jozeph, “Inequalities for trigonometric polynomials in periodic Morrey spaces”, Eurasian Math. J., 15:2 (2024), 92–100 | DOI

[6] V. A. Bykovskii, “Extremal cubature formulas for anisotropic classes”, Dal'nevost. Mat. Zh., 19 (2019), 10–19

[7] Dinh Dung, V. N. Temlyakov, T. Ullrich, Hyperbolic cross approximation, Birkhauser; Springer, 2018

[8] M. Frazier, B. Jawerth, “A discrete transform and decompositions of distribution spaces”, J. Funct. Anal., 93 (1990), 34–170 | DOI

[9] D. Haroske, L. Skrzypczak, “Entropy numbers of compact embeddings of smoothness Morrey spaces on bounded domains”, J. Approx. Theory, 256 (2020), 105424 | DOI

[10] D. Haroske, H. Triebel, Morrey smoothness spaces: a new approach, 20 Oct 2021, arXiv: 2110.10609v1 [math.FA]

[11] V. K. Nguyen, M. Ullrich, T. Ullrich, “Change of variable in spaces of mixed smoothness and numerical integration of multivariate functions on the unit cube”, Constr. Approx, 46 (2017), 69–108 | DOI

[12] M. Sautbekova, W. Sickel, “Strong summability of Fourier series and Morrey spaces”, Analysis Math., 40:1 (2014), 31–62 | DOI

[13] H. J. Schmeisser, H. Triebel, Topics in Fourier analysis and function spaces, Wiley, 1987

[14] M. A. Senouci, “Boundedness of the generalized Riemann Liouville operator in local Morrey type spaces”, Eurasian Math. J., 14:4 (2021), 63–68 | DOI

[15] W. Sickel, “Smoothness spaces related to Morrey spaces a survey I”, Eurasian Math. J., 3:3 (2012), 110–149

[16] W. Sickel, “Smoothness spaces related to Morrey spaces a survey II”, Eurasian Math. J., 4:1 (2013), 82–124

[17] Cubature formulas and modern analysis: An Introduction, Gordon and Breach Sci. Publ., Montreux, 1992

[18] E. M. Stein, G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, Princeton, N-J, 1971

[19] V. N. Temlyakov, Approximation of periodic functions, Nova Science Publ., N-Y, 1993

[20] V. N. Temlyakov, Multivariate approximation, CUP, Cambridge, 2018

[21] M. Ullrich, T. Ullrich, “The role of Frolov's cubature formula for functions with bounded mixed derivative”, SIAM J. Numer. Anal., 54 (2016), 969–993 | DOI

[22] D. Yang, W. Yuan, “Relations among Besov type spaces, Triebel-Lizorkin type spaces and generalized Carleson measure spaces”, Applicable Analysis, 92:3 (2013), 549–561 | DOI

[23] W. Yuan, D. D. Haroske, S. D. Moura, L. Skrzypczak, D. Yang, “Limiting embeddings in smoothness Morrey spaces, continuity envelopes and applications”, J. Approx. Theory, 192 (2015), 306–335 | DOI

[24] W. Yuan, W. Sickel, D. Yang, Morrey and Campanato meet Besov, Lizorkin and Triebel, Lecture Notes in Math., 2005, Springer, Berlin, 2010 | DOI