Invariant subspaces in non-quasianalytic spaces of $\Omega$-ultradifferentiable functions on an interval
Eurasian mathematical journal, Tome 15 (2024) no. 3, pp. 9-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider and solve a weakened version of the classical spectral synthesis problem for di erentiation operator in non-quasianalytic spaces of ultradi erentiable functions (UDF). Moreover, we deal with the widest class of UDF among all known ones. Namely, we study the spaces of $\Omega$-ultradifferentiable functions introduced by Alexander Abanin in 2007–08. For subspaces of these spaces which are invariant under the di erentiation operator we establish general conditions of weak spectral synthesis.
@article{EMJ_2024_15_3_a1,
     author = {N. F. Abuzyarova and Z. Yu. Fazullin},
     title = {Invariant subspaces in non-quasianalytic spaces of $\Omega$-ultradifferentiable functions on an interval},
     journal = {Eurasian mathematical journal},
     pages = {9--24},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2024_15_3_a1/}
}
TY  - JOUR
AU  - N. F. Abuzyarova
AU  - Z. Yu. Fazullin
TI  - Invariant subspaces in non-quasianalytic spaces of $\Omega$-ultradifferentiable functions on an interval
JO  - Eurasian mathematical journal
PY  - 2024
SP  - 9
EP  - 24
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2024_15_3_a1/
LA  - en
ID  - EMJ_2024_15_3_a1
ER  - 
%0 Journal Article
%A N. F. Abuzyarova
%A Z. Yu. Fazullin
%T Invariant subspaces in non-quasianalytic spaces of $\Omega$-ultradifferentiable functions on an interval
%J Eurasian mathematical journal
%D 2024
%P 9-24
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2024_15_3_a1/
%G en
%F EMJ_2024_15_3_a1
N. F. Abuzyarova; Z. Yu. Fazullin. Invariant subspaces in non-quasianalytic spaces of $\Omega$-ultradifferentiable functions on an interval. Eurasian mathematical journal, Tome 15 (2024) no. 3, pp. 9-24. http://geodesic.mathdoc.fr/item/EMJ_2024_15_3_a1/

[1] A. V. Abanin, Ul'tradifferentsiruemyye funktsii i ul'traraspredeleniya, Nauka, M., 2007 (In Russian)

[2] A. V. Abanin, “$\Omega$-ultradistributions”, Izv. Math., 72:2 (2008), 207–240 | DOI

[3] N. F. Abuzyarova, “Spectral synthesis in the Schwartz space of innitely differentiable functions”, Dokl. Math., 90:1 (2014), 479–482 | DOI

[4] N. F. Abuzyarova, “Spectral synthesis for the differentiation operator in the Schwartz space”, Math. Notes, 102 (2017), 137–148 | DOI

[5] N. F. Abuzyarova, “Principal submodules in the Schwartz module”, Russ Math., 64 (2020), 74–78 | DOI

[6] N. F. Abuzyarova, “On properties of functions invertible in the sense of Ehrenpreis in the Schwartz algebra”, Eurasian Math. J., 13:8 (2022), 9–18 | DOI

[7] N. F. Abuzyarova, “Representation of invariant subspaces of the Schwartz space”, Sb. Math., 213:8 (2022), 1020–1040 | DOI

[8] N. F. Abuzyarova, “Differentiation operator in the Beurling space of ultradifferentiable functions of normal type on an interval”, Lobachevskii J. of Math., 43:6 (2022), 1472–1485 | DOI

[9] A. Aleman, B. Korenblum, “Derivation-invariant subspaces of $C^\infty$”, Comp. Meth. and Function Theory, 8:2 (2008), 493–512 | DOI

[10] A. Aleman, A. Baranov, Yu. Belov, “Subspaces of $C^\infty$ invariant under the differentiation”, J. of Func. Anal., 268 (2015), 2421–2439 | DOI

[11] A. Baranov, Yu. Belov, “Synthesizable differentiation-invariant subspaces”, Geometric and Functional Analysis, 29:1 (2019), 44–71 | DOI

[12] A. M. Gaisin, B. E. Kanguzhin, A. A. Seitova, “Completeness of the exponential system on a segment of the real axis”, Eurasian Math. J., 13:2 (2022), 37–42 | DOI

[13] P. Koosis, Logarithmic integral, v. I, Cambridge Univ. Press, Cambridge, 1992

[14] P. Koosis, Logarithmic integral, v. II, Cambridge Univ. Press, Cambridge, 1998

[15] I. F. Krasichkov-Ternovskii, “Invariant subspaces of analytic functions. I. Spectral analysis on convex domains”, Math. USSR-Sb., 16:4 (1972), 471–500 | DOI

[16] I. F. Krasichkov-Ternovskii, “Invariant subspaces of analytic functions. II. Spectral synthesis of convex domains”, Math. USSR-Sb., 17:1 (1972), 1–29 | DOI

[17] I. F. Krasichkov-Ternovskii, “Invariant subspaces of analytic functions. III. On the extension of spectral synthesis”, Math. USSR-Sb., 17:3 (1972), 327–348 | DOI

[18] I. F. Krasichkov-Ternoskii, “Local description of closed ideals and submodules of analytic functions of one variable I”, Math. USSR-Izv., 14:1 (1980), 41–60 | DOI

[19] I. F. Krasichkov-Ternoskii, “Local description of closed ideals and submodules of analytic functions of one variable II”, Math. USSR-Izv., 14:2 (1980), 289–316 | DOI

[20] I. F. Krasichkov-Ternovskii, “Abstract methods for a local description of closed submodules of analytic functions”, Math. USSR-Sb., 71:2 (1992), 481–497 | DOI

[21] L. Schwartz, “Theorie generale des fonctions moyenne-periodique”, Ann. of Math., 48:4 (1947), 857–929 | DOI

[22] L. Schwartz, Theorie des distributions, v. I, II, Hermann, Paris, 1950–51