Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2024_15_2_a6, author = {V. I. Burenkov and D. J. Joseph}, title = {Inequalities for trigonometric polynomials in periodic {Morrey} spaces}, journal = {Eurasian mathematical journal}, pages = {92--100}, publisher = {mathdoc}, volume = {15}, number = {2}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2024_15_2_a6/} }
TY - JOUR AU - V. I. Burenkov AU - D. J. Joseph TI - Inequalities for trigonometric polynomials in periodic Morrey spaces JO - Eurasian mathematical journal PY - 2024 SP - 92 EP - 100 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2024_15_2_a6/ LA - en ID - EMJ_2024_15_2_a6 ER -
V. I. Burenkov; D. J. Joseph. Inequalities for trigonometric polynomials in periodic Morrey spaces. Eurasian mathematical journal, Tome 15 (2024) no. 2, pp. 92-100. http://geodesic.mathdoc.fr/item/EMJ_2024_15_2_a6/
[1] V. I. Burenkov, Sobolev spaces on domains, Teubner-Texte zur Mathematik, 137, B. G. Teubner Verlagsgesellschaft mbH, Stuttgart, 1997, 312 pp. | MR
[2] V. I. Burenkov, D. J. Joseph, “Inequalities for entire functions of exponential type in Morrey spaces”, Eurasian Math., 13:3 (2022), 92–99 | DOI | MR | Zbl
[3] V. I. Burenkov, D. J. Joseph, “Integral Inequalities for Entire Functions of Exponential Type in Morrey Spaces”, Proc. Math. Steklov Inst., 323 (2023), 81–100 (in Russian) | DOI | MR
[4] V.I. Burenkov, T.V. Tararykova, “An analogue of Young's inequality for convolutions of functions for general Morrey-type spaces”, Tr. MIAN, 293, MAIK, M, 2016, 113–132 (in Russian) | DOI | MR
[5] M. L. Gol'dman, “Description of traces for some function spaces”, Tr. MIAN USSR, 150, 1979, 99–127 (in Russian) | MR | Zbl
[6] I. I. Ibragimov, Extremal properties of entire functions of finite order, Izdat. Akad. Nauk Azerbaijan. SSR, Baku, 1962, 316 pp. (in Russian) | MR
[7] I. I. Ibragimov, “Extremum problems in the class of trigonometric polynomials”, Dokl. Akad. Nauk. SSSR, 121:3 (1958), 415–417 (in Russian) | MR | Zbl
[8] C. B. Morrey, “On the solutions of quasi-linear elliptic partial differential equations”, Trans. Amer. Math. Soc., 43 (1938), 126–166 | DOI | MR | Zbl
[9] S. M. Nikol'skii, Approximation of functions of several variables and embedding theorems, Izd. 2, revised. and additional, Nauka, M., 1977, 456 pp. (in Russian) | MR
[10] V. N. Temlyakov, Multivariate approximation, Cambridge Monogr. Appl. Comput. Math., 32, Cambridge Univer sity Press, Cambridge, 2018, 550 pp. | MR | Zbl