Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2024_15_2_a3, author = {A. M. Kamachkin and D. K. Potapov and V. V. Yevstafyeva}, title = {Dynamics of relay systems with hysteresis and harmonic perturbation}, journal = {Eurasian mathematical journal}, pages = {48--60}, publisher = {mathdoc}, volume = {15}, number = {2}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2024_15_2_a3/} }
TY - JOUR AU - A. M. Kamachkin AU - D. K. Potapov AU - V. V. Yevstafyeva TI - Dynamics of relay systems with hysteresis and harmonic perturbation JO - Eurasian mathematical journal PY - 2024 SP - 48 EP - 60 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2024_15_2_a3/ LA - en ID - EMJ_2024_15_2_a3 ER -
A. M. Kamachkin; D. K. Potapov; V. V. Yevstafyeva. Dynamics of relay systems with hysteresis and harmonic perturbation. Eurasian mathematical journal, Tome 15 (2024) no. 2, pp. 48-60. http://geodesic.mathdoc.fr/item/EMJ_2024_15_2_a3/
[1] A. A. Andronov, A. A. Vitt, S. E. Khaikin, Theory of oscillators, Dover, New York, 1966 | MR
[2] M. Arnold, N. Begun, P. Gurevich, E. Kwame, H. Lamba, D. Rachinskii, “Dynamics of discrete time systems with a hysteresis stop operator”, SIAM J. Appl. Dyn. Syst., 16:1 (2017), 91–119 | DOI | MR | Zbl
[3] K. J. Astrom, “Oscillations in systems with relay feedback”, Adaptive Control, Filtering and Signal Processing, eds. K. J. Astrom, G.C. Goodwin, P.R. Kumar, Springer-Verlag, New York, 1995, 1–25 | MR | Zbl
[4] G. Bertotti, I. D. Mayergoyz, The science of hysteresis, Elsevier, Oxford, 2006 | MR
[5] M. Brokate, P. Krejci, “Weak differentiability of scalar hysteresis operators”, Discrete Contin. Dyn. Syst. Ser. A, 35:6 (2015), 2405–2421 | DOI | MR | Zbl
[6] M. Brokate, J. Sprekels, Hysteresis and phase transitions, Springer, Heidelberg, 1996 | MR | Zbl
[7] R. S. Burns, Advanced control engineering, Butterworth-Heinemann, Oxford, 2001
[8] L. Fang, J. Wang, Q. Zhang, “Identification of extended Hammerstein systems with hysteresis-type input nonlinearities described by Preisach model”, Nonlinear Dyn., 79:2 (2015), 1257–1273 | DOI | MR | Zbl
[9] M. O. Fen, F. Tokmak Fen, “Unpredictable oscillations of SICNNs with delay”, Neurocomputing, 464 (2021), 119–129 | DOI
[10] M. O. Fen, F. Fen, “Quasilinear systems with unpredictable relay perturbations”, Turk. J. Math., 46:4 (2022), 1369–1383 | DOI | MR | Zbl
[11] M. O. Fen, F. Tokmak Fen, “Unpredictability in quasilinear non-autonomous systems with regular moments of impulses”, Mediterr J. Math., 20:4 (2023), 191 | DOI | MR | Zbl
[12] A. S. Fursov, R. P. Mitrev, P. A. Krylov, T. S. Todorov, “On the existence of a periodic mode in a nonlinear system”, Differ. Equ., 57:8 (2021), 1076–1087 | DOI | MR | Zbl
[13] A. S. Fursov, T. S. Todorov, P. A. Krylov, R. P. Mitrev, “On the existence of oscillatory modes in a nonlinear system with hystereses”, Differ. Equ., 56:8 (2020), 1081–1099 | DOI | MR | Zbl
[14] E. Hooton, Z. Balanov, W. Krawcewicz, D. Rachinskii, “Noninvasive stabilization of periodic orbits in $O_4$-symmetrically coupled systems near a Hopf bifurcation point”, Int. J. Bifurcation Chaos, 27:6 (2017), 1750087, 18 pp. | DOI | MR | Zbl
[15] K. H. Johansson, A. Rantzer, K. J. Astrom, “Fast switches in relay feedback systems”, Automatica, 35:4 (1999), 539–552 | DOI | Zbl
[16] A. M. Kamachkin, G. M. Chitrov, V. N. Shamberov, “Normal matrix forms to decomposition and control problems for manydimensional systems”, Vestn. St. Petersb. Univ. Prikl. Mat. Inform. Prots. Uprav., 13:4 (2017), 417–430 | MR
[17] A. M. Kamachkin, D. K. Potapov, V. V. Yevstafyeva, “Existence of periodic solutions to automatic control system with relay nonlinearity and sinusoidal external influence”, Int. J. Robust Nonlinear Control, 27:2 (2017), 204–211 | DOI | MR | Zbl
[18] A. M. Kamachkin, D. K. Potapov, V. V. Yevstafyeva, “On uniqueness and properties of periodic solution of second order nonautonomous system with discontinuous nonlinearity”, J. Dyn. Control Syst., 23:4 (2017), 825–837 | DOI | MR | Zbl
[19] A. M. Kamachkin, D. K. Potapov, V. V. Yevstafyeva, “Existence of periodic modes in automatic control system with a three-position relay”, Int. J. Control, 93:4 (2020), 763–770 | DOI | MR | Zbl
[20] A. M. Kamachkin, D. K. Potapov, V. V. Yevstafyeva, “Continuous dependence on parameters and boundedness of solutions to a hysteresis system”, Appl. Math., 67:1 (2022), 65–80 | DOI | MR
[21] A. M. Kamachkin, D. K. Potapov, V. V. Yevstafyeva, “Fixed points of a mapping generated by a system of ordinary differential equations with relay hysteresis”, Differ. Equ, 58:4 (2022), 455–467 | DOI | MR | Zbl
[22] A. M. Kamachkin, V. N. Shamberov, “The decomposition method of research into the nonlinear dynamical systems' space of parameters”, Appl. Math. Sci., 9:81 (2015), 4009–4018
[23] D. P. Kim, Automatic control theory, v. 2, Fizmatlit, M., 2004
[24] M. A. Krasnosel'skii, A. V. Pokrovskii, Systems with hysteresis, Springer, Berlin, 1989 | MR | Zbl
[25] P. Lancaster, Theory of matrices, Academic Press, New York–London, 1969 | MR | Zbl
[26] G. A. Leonov, M. M. Shumafov, V. A. Teshev, K. D. Aleksandrov, “Differential equations with hysteresis operators. Existence of solutions, stability, and oscillations”, Differ. Equ, 53:13 (2017), 1764–1816 | DOI | MR | Zbl
[27] J. W. Macki, P. Nistri, P. Zecca, “Mathematical models for hysteresis”, SIAM Review, 35:1 (1993), 94–123 | DOI | MR | Zbl
[28] I. D. Mayergoyz, Mathematical models of hysteresis and their applications, Elsevier, Amsterdam, 2003 | MR
[29] A. L. Medvedskii, P. A. Meleshenko, V. A. Nesterov, O. O. Reshetova, M. E. Semenov, A. M. Solovyov, “Unstable oscillating systems with hysteresis: problems of stabilization and control”, J. Comput. Syst. Sci. Int., 59:4 (2020), 533–556 | DOI | MR | Zbl
[30] P. N. Paraskevopoulos, Modern control engineering, Marcel Dekker Inc, New York, 2002
[31] A. M. Solovyov, M. E. Semenov, P. A. Meleshenko, O. O. Reshetova, M. A. Popov, E. G. Kabulova, “Hysteretic nonlinearity and unbounded solutions in oscillating systems”, Procedia Engineering, 201 (2017), 578–583 | DOI
[32] Ya. Z. Tsypkin, Relay control systems, Cambridge University Press, Cambridge, 1984 | MR | Zbl
[33] M. A. Vasquez-Beltran, B. Jayawardhana, R. Peletier, “Recursive algorithm for the control of output remnant of Preisach hysteresis operator”, IEEE Control Syst. Lett., 5:3 (2021), 1061–1066 | DOI | MR
[34] A. Visintin, Differential models of hysteresis, Springer, Berlin, 1994 | MR | Zbl
[35] A. Visintin, “Ten issues about hysteresis”, Acta Appl. Math., 132:1 (2014), 635–647 | DOI | MR | Zbl
[36] V. V. Yevstafyeva, “On existence conditions for a two-point oscillating periodic solution in an non-autonomous relay system with a Hurwitz matrix”, Automat. Remote Control, 76:6 (2015), 977–988 | DOI | MR | Zbl
[37] V. V. Yevstafyeva, “Periodic solutions of a system of differential equations with hysteresis nonlinearity in the presence of eigenvalue zero”, Ukr. Math. J., 70:8 (2019), 1252–1263 | DOI | MR | Zbl
[38] V. V. Yevstafyeva, “Existence of two-point oscillatory solutions of a relay nonautonomous system with multiple eigenvalue of a real symmetric matrix”, Ukr. Math. J., 73:5 (2021), 746–757 | DOI | MR | Zbl
[39] V. V. Yevstafyeva, “On the existence of two-point oscillatory solutions of a perturbed relay system with hysteresis”, Differ. Equ, 57:2 (2021), 155–164 | DOI | MR | Zbl
[40] V. V. Yevstafyeva, “Control design for a perturbed system with an ambiguous nonlinearity”, Automat. Remote Control, 84:3 (2023), 254–269 | DOI | MR
[41] V. V. Yevstafyeva, “Criterion for the existence of two-point oscillatory solution of a perturbed system with a relay”, Math. Notes, 114:2 (2023), 212–222 | DOI | MR | Zbl
[42] C. C. Yu, Autotuning of PID controllers: relay feedback approach, Springer-Verlag, New York, 1999 | Zbl