Estimate of the best constant of discrete Hardy-type inequality with matrix operator satisfying the Oinarov condition
Eurasian mathematical journal, Tome 15 (2024) no. 2, pp. 42-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper studies the weighted inequality of Hardy-type in discrete form for matrix operators satisfying the Oinarov condition. Necessary and sufficient conditions on the weight sequences under which the Hardy-type inequality holds were found in [13] for the case $1 p \leq q \infty$, in [14] for the case $1 q p \infty$, and in [15] for the case $0 p \leq q \infty$, $0 p \leq 1$. In this paper, we extend the result of [13] with a two-sided estimate of the inequality constant.
@article{EMJ_2024_15_2_a2,
     author = {A. Kalybay and S. Shalginbayeva},
     title = {Estimate of the best constant of discrete {Hardy-type} inequality with matrix operator satisfying the {Oinarov} condition},
     journal = {Eurasian mathematical journal},
     pages = {42--47},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2024_15_2_a2/}
}
TY  - JOUR
AU  - A. Kalybay
AU  - S. Shalginbayeva
TI  - Estimate of the best constant of discrete Hardy-type inequality with matrix operator satisfying the Oinarov condition
JO  - Eurasian mathematical journal
PY  - 2024
SP  - 42
EP  - 47
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2024_15_2_a2/
LA  - en
ID  - EMJ_2024_15_2_a2
ER  - 
%0 Journal Article
%A A. Kalybay
%A S. Shalginbayeva
%T Estimate of the best constant of discrete Hardy-type inequality with matrix operator satisfying the Oinarov condition
%J Eurasian mathematical journal
%D 2024
%P 42-47
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2024_15_2_a2/
%G en
%F EMJ_2024_15_2_a2
A. Kalybay; S. Shalginbayeva. Estimate of the best constant of discrete Hardy-type inequality with matrix operator satisfying the Oinarov condition. Eurasian mathematical journal, Tome 15 (2024) no. 2, pp. 42-47. http://geodesic.mathdoc.fr/item/EMJ_2024_15_2_a2/

[1] K. F. Andersen, H. P. Heinig, “Weighted norm inequalities for certain integral operators”, SIAM J. Math. Anal., 14:4 (1983), 834–844 | DOI | MR | Zbl

[2] G. Bennett, “Some elementary inequalities”, Quart. J. Math. Oxford Ser., 38:4 (1987), 401–425 | DOI | MR | Zbl

[3] G. Bennett, “Some elementary inequalities, II”, Quart. J. Math. Oxford Ser., 39:4 (1988), 385–400 | DOI | MR | Zbl

[4] G. Bennett, “Some elementary inequalities, III”, Quart. J. Math. Oxford Ser., 42 (1991), 149–174 | DOI | MR | Zbl

[5] S. Bloom, R. Kerman, “Weighted norm inequalities for operators of Hardy type”, Proc. Amer. Math. Soc., 113:1 (1991), 135–141 | DOI | MR | Zbl

[6] M. Sh. Braverman, V. D. Stepanov, “On the discrete Hardy inequality”, Bull. London Math. Soc., 26 (1994), 283–287 | DOI | MR | Zbl

[7] V. Garcia Garcia, P. Ortega Salvador, “Some new weighted weak-type iterated and bilinear modified Hardy in equalities”, Ann. Funct. Anal., 15:26 (2024) | DOI | MR

[8] H. P. Heinig, “Weighted norm inequalities for certain integral operators, II”, Proc. Amer. Math. Soc., 95:3 (1985), 387–395 | DOI | MR | Zbl

[9] A. Kalybay, A. O. Baiarystanov, “Exact estimate of norm of integral operator with Oinarov condition”, Kazakh Math. J., 21:1 (2021), 6–14 | MR | Zbl

[10] A. Kufner, L. Maligranda, L. E. Persson, The Hardy inequality. About its history and some related results, Vydavatelsky servis, Pilsen, 2007 | MR | Zbl

[11] K. T. Mynbaev, “Three weight Hardy inequality on measure topological spaces”, Eurasian Math. J., 14:2 (2023), 58–78 | MR

[12] R. Oinarov, “Two-sided norm estimates for certain classes of integral operators”, Proc. Steklov Inst. Math., 204 (1994), 205–214 | MR

[13] R. Oinarov, S. Shalginbayeva, “Weighted additive estimate of one class of matrix operators”, Izv. Nats. Akad. Nauk Resp. Kaz. Ser. Fiz. Mat., 2004, no. 1, 411–421 (in Russian) | MR

[14] Zh. Taspaganbetova, A. Temirkhanova, “Criteria on boundedness of matrix operators in weighted spaces of se quences and their applications”, Ann. Funct. Anal., 2:1 (2011), 114–127 | DOI | MR | Zbl

[15] S. Shaimardan, S. Shalginbayeva, “Hardy-type inequalities for matrix operators”, Bull. Karaganda Univ. Math., 88:4 (2017), 63–72 | DOI

[16] N. Zhangabergenova, A. Temirkhanova, “Iterated discrete Hardy-type inequalities”, Eurasian Math. J., 14:1 (2023), 81–95 | DOI | MR