Finite groups with given systems of propermutable subgroups
Eurasian mathematical journal, Tome 15 (2024) no. 1, pp. 91-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $H$ be a subgroup of a finite group $G$. Then we say that $H$ is propermutable in $G$ provided $G$ has a subgroup $B$ such that $G = NG(H)B$ and $H$ permutes with all subgroups of $B$. In this paper, we present new properties of propermutable subgroups. Also we provide new information on the structure of a group with propermutable Sylow (Hall, maximal) subgroups and a group $G = AB$ with propermutable subgroups $A$ and $B$.
@article{EMJ_2024_15_1_a7,
     author = {A. A. Trofimuk},
     title = {Finite groups with given systems of propermutable subgroups},
     journal = {Eurasian mathematical journal},
     pages = {91--97},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2024_15_1_a7/}
}
TY  - JOUR
AU  - A. A. Trofimuk
TI  - Finite groups with given systems of propermutable subgroups
JO  - Eurasian mathematical journal
PY  - 2024
SP  - 91
EP  - 97
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2024_15_1_a7/
LA  - en
ID  - EMJ_2024_15_1_a7
ER  - 
%0 Journal Article
%A A. A. Trofimuk
%T Finite groups with given systems of propermutable subgroups
%J Eurasian mathematical journal
%D 2024
%P 91-97
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2024_15_1_a7/
%G en
%F EMJ_2024_15_1_a7
A. A. Trofimuk. Finite groups with given systems of propermutable subgroups. Eurasian mathematical journal, Tome 15 (2024) no. 1, pp. 91-97. http://geodesic.mathdoc.fr/item/EMJ_2024_15_1_a7/

[1] K. A. Al-Sharo, “Finite groups with given systems of weakly S-propermutable subgroups”, J. Group Theory, 19 (2016), 871–887 | DOI | MR | Zbl

[2] M. Asaad, A. Shaalan, “On the supersolubility of finite groups”, Arch. Math, 53 (1989), 318–326 | DOI | MR | Zbl

[3] R. Baer, “Classes of finite groups and their properties”, Illinois J. Math., 1 (1957), 115–187 | DOI | MR | Zbl

[4] A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, Products of finite groups, Walter de Gruyter, Berlin, 2010 | MR | Zbl

[5] K. Doerk, T. Hawkes, Finite soluble groups, Walter de Gruyter, Berlin-New York, 1992 | MR

[6] GAP, Groups, Algorithms, and Programming, Version 4.12.2, , 2022 www.gap-system.org

[7] B. Huppert, Endliche Gruppen I, Springer, Berlin-Heidelberg-New York, 1967 | MR | Zbl

[8] V. N. Knyagina, V. S. Monakhov, “Finite groups with seminormal Schmidt subgroups”, Algebra Logic, 46:4 (2007), 244–249 | DOI | MR | Zbl

[9] V. S. Monakhov, “Finite groups with a seminormal Hall subgroup”, Math. Notes, 80:4 (2006), 542–549 | DOI | MR | Zbl

[10] V. S. Monakhov, Introduction to the theory of final groups and their classes, Vysh. Shkola, Minsk, 2006 (in Russian)

[11] V. S. Monakhov, I. K. Chirik, “On the p-supersolvability of a finite factorizable group with normal factors”, Trudy Inst. Mat. i Mekh. UrO RAN, 21, no. 3, 2015, 256–267 (in Russian) | MR

[12] V. S. Monakhov, A. A. Trofimuk, “Finite groups with two supersoluble subgroups”, J. Group Theory, 22 (2019), 297–312 | DOI | MR | Zbl

[13] V. S. Monakhov, A. A. Trofimuk, “On the supersolubility of a group with seminormal subgroups”, Sib. Math. J., 61:1 (2020), 118–126 | DOI | MR | Zbl

[14] E. R. Perez, “On products of normal supersoluble subgroups”, Algebra Colloq, 6:3 (1999), 341–347 | MR | Zbl

[15] A. A. Trofimuk, “On the residual of a finite group with semi-subnormal subgroups”, Publ. Math. Debrecen, 96:1-2 (2020), 141–147 | DOI | MR | Zbl

[16] X. Yi, A. N. Skiba, “On S-propermutable subgroups of finite groups”, Bull. Malays. Math. Sci. Soc., 38:2 (2015), 605–616 | DOI | MR | Zbl

[17] X. Yi, A. N. Skiba, “Some new characterizations of PST-groups”, J. Algebra, 399 (2014), 39–54 | DOI | MR | Zbl