Asymptotics of the solution of parabolic problems with nonsmooth boundary functions
Eurasian mathematical journal, Tome 15 (2024) no. 1, pp. 49-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we construct the asymptotics of the solution to a singularly perturbed parabolic problem with a nonsmooth boundary layer function. In contrast to works devoted to this direction, our asymptotics contains only one boundary layer function, which is the product of parabolic and exponential boundary layer functions. Our approach allows us to construct a classical solution without applying smoothing procedures.
@article{EMJ_2024_15_1_a3,
     author = {A. Omuraliev and E. Abylaeva},
     title = {Asymptotics of the solution of parabolic problems with nonsmooth boundary functions},
     journal = {Eurasian mathematical journal},
     pages = {49--54},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2024_15_1_a3/}
}
TY  - JOUR
AU  - A. Omuraliev
AU  - E. Abylaeva
TI  - Asymptotics of the solution of parabolic problems with nonsmooth boundary functions
JO  - Eurasian mathematical journal
PY  - 2024
SP  - 49
EP  - 54
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2024_15_1_a3/
LA  - en
ID  - EMJ_2024_15_1_a3
ER  - 
%0 Journal Article
%A A. Omuraliev
%A E. Abylaeva
%T Asymptotics of the solution of parabolic problems with nonsmooth boundary functions
%J Eurasian mathematical journal
%D 2024
%P 49-54
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2024_15_1_a3/
%G en
%F EMJ_2024_15_1_a3
A. Omuraliev; E. Abylaeva. Asymptotics of the solution of parabolic problems with nonsmooth boundary functions. Eurasian mathematical journal, Tome 15 (2024) no. 1, pp. 49-54. http://geodesic.mathdoc.fr/item/EMJ_2024_15_1_a3/

[1] R. P. Agarwal, A. M. Alghamdi, S. Gala, M. A. Ragusa, “On the regularity criterion on one velocity component for the micropolar fluid equations”, Mathematical Modelling and Analysis, 28:2 (2023), 271–284 | DOI | MR | Zbl

[2] O. N. Bulycheva, V. T. Sushko, “Construction of an approximate solution for a singularly perturbed parabolic problem with nonsmooth degeneration”, Fundam. and Applied Mathematics, 1:4 (1995), 881–905 | MR | Zbl

[3] M. V. Butuzova, “Asymptotics of the solution of the bisingular problem for systems of parabolic equations”, Models and analysis of information systems, 20:1 (2013), 5–17 | DOI

[4] V. F. Butuzov, V. Yu. Buchnev, “On the asymptotics of the solution of a singularly perturbed parabolic problem in the two-dimensional case”, Differential Equations, 25:3 (1989), 453–461 | MR | Zbl

[5] V. F. Butuzov, A. V. Nesterov, “On the asymptotics of the solution of a parabolic equation with a small parameter in the highest derivatives”, Journal of computational mathematics and mathematics physics, 22:4 (1982), 865–870 | MR | Zbl

[6] T. S. Hassan, A. A. Attiya, M. Alshammari, A. A. Menaem, A. Tchalla, I. Odinaev, “Oscillatory and asymptotic behavior of nonlinear functional dynamic equations of third order”, Journal of Function Spaces, 2022 (2022), 7378802 | MR | Zbl

[7] A. M. Ilyin, Matching asymptotic expansions of boundary value problems, Nauka, M., 1980 (in Russian) | MR

[8] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Ural'tseva, Linear and quasilinear parabolic equations, Nauka, M., 1967 (in Russian) | MR | Zbl

[9] S. A. Lomov, Introduction to the general theory of singular perturbations, Nauka, M., 1981 (in Russian) | MR | Zbl

[10] A. S. Omuraliev, Asymptotics of the solution of singularly perturbed parabolic problems, Saarbrücken University, 2017 (in Russian)

[11] A. Omuraliev, E. Abylaeva, “Regularized asymptotics of the solution of systems of parabolic differential equations”, Filomat, 36:16 (2022), 5591–5602 | DOI | MR