Voir la notice de l'article provenant de la source Math-Net.Ru
@article{EMJ_2024_15_1_a2, author = {B. I. Islomov and D. A. Nasirova}, title = {A problem with gellerstedt conditions on different characteristics for a mixed loaded equation of the second kind}, journal = {Eurasian mathematical journal}, pages = {34--48}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/EMJ_2024_15_1_a2/} }
TY - JOUR AU - B. I. Islomov AU - D. A. Nasirova TI - A problem with gellerstedt conditions on different characteristics for a mixed loaded equation of the second kind JO - Eurasian mathematical journal PY - 2024 SP - 34 EP - 48 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/EMJ_2024_15_1_a2/ LA - en ID - EMJ_2024_15_1_a2 ER -
%0 Journal Article %A B. I. Islomov %A D. A. Nasirova %T A problem with gellerstedt conditions on different characteristics for a mixed loaded equation of the second kind %J Eurasian mathematical journal %D 2024 %P 34-48 %V 15 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/EMJ_2024_15_1_a2/ %G en %F EMJ_2024_15_1_a2
B. I. Islomov; D. A. Nasirova. A problem with gellerstedt conditions on different characteristics for a mixed loaded equation of the second kind. Eurasian mathematical journal, Tome 15 (2024) no. 1, pp. 34-48. http://geodesic.mathdoc.fr/item/EMJ_2024_15_1_a2/
[1] V. M. Abdullaev, K. R. Aida-zade, “Numerical method of solution to loaded nonlocal boundary value problems for ordinary differential equations”, Comput. Math. Math. Phys, 54 (2014), 1096–1109 | DOI | MR | Zbl
[2] V. M. Abdullaev, K. R. Aida-zade, “On the numerical solution to loaded systems of ordinary differential equations with non-separated multipoint and integral conditions”, Numer. Anal. Appl, 7:1 (2014), 1–14 | DOI | MR | Zbl
[3] A. A. Alikhanov, A. M. Berezkov, M. Kh. Shkhanukhov-Lafishev, “Boundary value problems for certain classes of loaded differential equations and solving them by finite difference methods”, Comput. Math. Math. Phys, 48:9 (2005), 1581–1590 | DOI | MR
[4] A. B. Alsaedi, A. B. Alghamdi, S. K. Ntouyas, “On a nonlinear system of Riemann-Liouville fractional differential equations with semi-coupled integro-multipoint boundary conditions”, Open Math, 19 (2021), 760–772 | DOI | MR | Zbl
[5] A. T. Assanova, Zh. M. Kadirbayeva, “On the numerical algorithms of parametrization method for solving a two point boundary-value problem for impulsive systems of loaded differential equations”, Comput. Appl. Math, 37 (2018), 4966–4976 | DOI | MR | Zbl
[6] A. T. Assanova, Zh. M. Kadirbayeva, “Periodic problem for an impulsive system of the loaded hyperbolic equations”, Electron. J. Differential Equations, 72 (2018), 1–8 | MR
[7] R. R. Ashurov, Yu. E. Fayziev, “Determination of fractional order and source term in subdiffusion equations”, Eurasian Math. J, 13:1 (2022), 19–31 | DOI | MR | Zbl
[8] A. Kh. Attaev, “The problem with data on parallel characteristics for the loaded wave equation”, Reports of the Adyghe (Circassian) International Academy of Sciences, 15 (2013), 25–28
[9] U. Baltaeva, “Solvability of the analogs of the problem Tricomi for the mixed type loaded equations with parabolic hyperbolic operators”, Boundary Value Problems, 2014, no. 211, 1–12 | MR
[10] S. Z. Dzhamalov, R. R. Ashurov, “On a nonlocal boundary-value problem for second kind second-order mixed type loaded equation in a rectangle”, Uzbek Mathematical Journal, 2018, no. 3, 63–72 | DOI | MR | Zbl
[11] T. D. Dzhuraev, Boundary-value problems for equations of mixed and mixed-composite type, Fan, Tashkent, 1979, 240 pp. | MR
[12] N. M. Gynter, A. Sh. Gabibzade, “Study of a class of linear and nonlinear loaded integral equations with different parameters”, Scientific Notes of AzSU. Ser. phys., matem. and chem. sciences. Baku, 1958, no. 1, 41–59
[13] R. Hilfer, Applications of fractional calculus in physics, World Scientific Publishing Company, Singapore, 87–130 | MR | Zbl
[14] A. M. Ilyin, A. S. Kalashnikov, O. A. Oleinik, “Second order linear equations of parabolic type”, Russian Mathematical Surveys, 17:3 (1962), 3–141 | MR
[15] N. B. Islamov, “An analogue of the Bitsadze-Samarskii problem for a class of equations of parabolic-hyperbolic type of the second kind”, Ufa Mathematical Journal, 7:1 (2015), 31–45 | DOI | MR | Zbl
[16] B. I. Islomov, D. M. Kuryazov, “On a boundary value problem for a loaded second order equation”, Dokl. Academy of Sciences of the Republic of Uzbekistan, 1996, no. 1-2, 3–6 | MR
[17] B. I. Islomov, F. Zhuraev, “Local boundary value problems for a loaded parabolic-hyperbolic type equation degenerating inside a domain”, Ufa Mathematical Journal, 14:1 (2022), 41–56 | DOI | MR | Zbl
[18] B. Islomov, U. Baltaeva, “Boudanry value problems for a third-order loaded parabolic-hyperbolic type equation with variable coefficients”, Electronic Journal of Differential Equations, 2016, no. 221, 1–10 | MR
[19] B. I. Islomov, Zh. A. Kholbekov, “On a nonlocal boundary value problem for a loaded parabolic-hyperbolic equation with three lines of type change”, J. Samara State Tech. Univ. Ser. Phys. Math. Sciences, 25:3 (2021), 407–422 | Zbl
[20] B. I. Islomov, D. A. Nasirova, “Local boundary value problems for a degenerate loaded equation of parabolic hyperbolic type of the second kind”, Lobachevskii Journal of Mathematics, 43:12 (2023), 5259–5268 | MR
[21] M. T. Jenaliyev, M. I. Ramazanov, Loaded equations as perturbations of differential equations, Ilim, Almaty, 2010, 334 pp.
[22] M. T. Jenaliyev, M. I. Ramazanov, M. T. Kosmakova, Zh. M. Tuleutaeva, “On the solution to a two-dimensional heat conduction problem in a degenerate domain”, Eurasian Math. J., 11:3 (2020), 89–94 | DOI | MR | Zbl
[23] Zh. M. Kadirbayeva, “A numerical method for solving boundary value problem for essentially loaded differential equations”, Lobachevskii Journal of Mathematics, 42:3 (2021), 551–559 | DOI | MR | Zbl
[24] I. L. Karol, “On a boundary value problem for an equation of mixed elliptic-hyperbolic type”, Dokl. Academy of Sciences of the USSR, 88:2 (1953), 197–200 | MR | Zbl
[25] K. U. Khubiev, “Shift problems for a loaded hyperbolic-parabolic equation with a fractional diffusion operator”, Notes. Udmurt. University. Mathematics. Mechanics. Computer sciences, 28:1 (2018), 82–90 | MR | Zbl
[26] B. S. Kishin, O. Kh. Abdullaev, “About a problem for loaded parabolic-hyperbolic type equation with fractional derivatives”, International Journal of Differential Equations, 2016, 6 pp. | MR
[27] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North Holland Mathematics Studies, 204, Elsevier, Amsterdam, 2006, 523 pp. | MR | Zbl
[28] L. Lichtenstein, Vorlesungen uber einege klassen nichtlinear integralgleichungen und integraldifferential gleihungen nebst anwendungen, Springer, Berlin, 1931, 164 pp.
[29] A. I. Kozhanov, “On one non-linear loaded parabolic equation and the related parabolic equation”, Math. notes, 76:6 (2004), 840–853 | MR | Zbl
[30] N. K. Mamadaliyev, “O representations, solutions of the modified Cauchy problem”, Sib. Math. Journal of the Russian Academy of Sciences, 41:5 (2000), 1087–1097 | MR
[31] S. G. Mikhlin, Lectures on linear integral equations, Fizmatgiz, M., 1959, 232 pp. | MR
[32] A. M. Nakhushev, Fractional calculus and its applications, Fizmatlit, M., 2003, 272 pp. | Zbl
[33] A. M. Nakhushev, Equations of mathematical biology, Vyshaiya shkola, M., 1995, 301 pp. | Zbl
[34] A. M. Nakhushev, Loaded equations and their applications, Nauka, M., 2012, 232 pp.
[35] N. N. Nazarov, “On a new class of linear integral equations”, Proceedings of the Institute of Mathematics and Mechanics of the Academy of Sciences of the Uzbek SSR. Tashkent, 1948, no. 4, 77–106
[36] I. N. Parasidis, E. Providas, “An exact solution method for a class of nonlinear loaded difference equations with multipoint boundary conditions”, J. Differential Equations Appl., 24:10 (2018), 1649–1663 | DOI | MR | Zbl
[37] K. B. Sabitov, I. P. Egorova, “On the well-posedness of boundary value problems with periodicity conditions for a mixed-type equation of the second kind”, Vestn. Sam. state. tech. university. Ser. Phys. Math. Science, 23:3 (2019), 430–451 | Zbl
[38] K. B. Sabitov, A. Kh. Suleimanova, “The Dirichlet problem for an equation of mixed type with characteristic de generation in a rectangular domain”, Izv. universities. Mathematics, 2009, no. 11, 43–52 | MR | Zbl
[39] Yu. K. Sabitova, “The Dirichlet problem for the Lavrentiev-Bitsadze equation with loaded terms”, Isv. Universities. Mathematics, 2018, no. 9, 42–58 | MR | Zbl
[40] K. M. Shinaliyev, B. Kh. Turmetov, S. R. Umarov, “A fractional operator algorithm method for construction of solutions of fractional order differential equations”, Fract. Calc. Appl. Anal, 15:2 (2012), 267–281 | DOI | MR | Zbl
[41] M. S. Salakhitdinov, Equations of mixed composite type, Fan, Tashkent, 1974, 156 pp. | MR
[42] M. S. Salakhitdinov, N. B. Islamov, “Nonlocal boundary value problem with the Bitsadze-Samarsky condition for an equation of parabolic-hyperbolic type of the second kind”, News of universities. Mathematics. Russia, 2015, no. 6, 43–52 | MR | Zbl
[43] M. Kh. Shkhanukov, “On some boundary value problems for a third-order equation that arise in modeling fluid filtration in porous media”, Differential Equations, 18:4 (1982), 689–699 | MR | Zbl
[44] M. M. Smirnov, Mixed type equations, M., 1985, 304 pp. | MR
[45] J. Wiener, L. Debnath, “A survey of partial differential equations with piecewise continuous arguments”, Internet J. Math. and Math. Scz, 18:2 (1995), 209–228 | DOI | MR | Zbl
[46] T. K. Yuldashev, B. I. Islomov, A. A. Abdullaev, “On solvability of a Poincare-Tricomi type problem for an elliptic-hyperbolic equation of the second kind”, Lobachevskii Journal of Mathematics, 42:3 (2021), 663–675 | DOI | MR | Zbl