A problem with gellerstedt conditions on different characteristics for a mixed loaded equation of the second kind
Eurasian mathematical journal, Tome 15 (2024) no. 1, pp. 34-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work is devoted to a formulation and an investigation of a boundary value problem with Gellerstedt conditions on different characteristics for the loaded parabolic-hyperbolic type equation of the second kind.By using the extremum principle and the method of energy integrals, there are proved the uniqueness of solution of the formulated problem, and the existence of a solution to the problem — by the method integral equations.
@article{EMJ_2024_15_1_a2,
     author = {B. I. Islomov and D. A. Nasirova},
     title = {A problem with gellerstedt conditions on different characteristics for a mixed loaded equation of the second kind},
     journal = {Eurasian mathematical journal},
     pages = {34--48},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2024_15_1_a2/}
}
TY  - JOUR
AU  - B. I. Islomov
AU  - D. A. Nasirova
TI  - A problem with gellerstedt conditions on different characteristics for a mixed loaded equation of the second kind
JO  - Eurasian mathematical journal
PY  - 2024
SP  - 34
EP  - 48
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2024_15_1_a2/
LA  - en
ID  - EMJ_2024_15_1_a2
ER  - 
%0 Journal Article
%A B. I. Islomov
%A D. A. Nasirova
%T A problem with gellerstedt conditions on different characteristics for a mixed loaded equation of the second kind
%J Eurasian mathematical journal
%D 2024
%P 34-48
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2024_15_1_a2/
%G en
%F EMJ_2024_15_1_a2
B. I. Islomov; D. A. Nasirova. A problem with gellerstedt conditions on different characteristics for a mixed loaded equation of the second kind. Eurasian mathematical journal, Tome 15 (2024) no. 1, pp. 34-48. http://geodesic.mathdoc.fr/item/EMJ_2024_15_1_a2/

[1] V. M. Abdullaev, K. R. Aida-zade, “Numerical method of solution to loaded nonlocal boundary value problems for ordinary differential equations”, Comput. Math. Math. Phys, 54 (2014), 1096–1109 | DOI | MR | Zbl

[2] V. M. Abdullaev, K. R. Aida-zade, “On the numerical solution to loaded systems of ordinary differential equations with non-separated multipoint and integral conditions”, Numer. Anal. Appl, 7:1 (2014), 1–14 | DOI | MR | Zbl

[3] A. A. Alikhanov, A. M. Berezkov, M. Kh. Shkhanukhov-Lafishev, “Boundary value problems for certain classes of loaded differential equations and solving them by finite difference methods”, Comput. Math. Math. Phys, 48:9 (2005), 1581–1590 | DOI | MR

[4] A. B. Alsaedi, A. B. Alghamdi, S. K. Ntouyas, “On a nonlinear system of Riemann-Liouville fractional differential equations with semi-coupled integro-multipoint boundary conditions”, Open Math, 19 (2021), 760–772 | DOI | MR | Zbl

[5] A. T. Assanova, Zh. M. Kadirbayeva, “On the numerical algorithms of parametrization method for solving a two point boundary-value problem for impulsive systems of loaded differential equations”, Comput. Appl. Math, 37 (2018), 4966–4976 | DOI | MR | Zbl

[6] A. T. Assanova, Zh. M. Kadirbayeva, “Periodic problem for an impulsive system of the loaded hyperbolic equations”, Electron. J. Differential Equations, 72 (2018), 1–8 | MR

[7] R. R. Ashurov, Yu. E. Fayziev, “Determination of fractional order and source term in subdiffusion equations”, Eurasian Math. J, 13:1 (2022), 19–31 | DOI | MR | Zbl

[8] A. Kh. Attaev, “The problem with data on parallel characteristics for the loaded wave equation”, Reports of the Adyghe (Circassian) International Academy of Sciences, 15 (2013), 25–28

[9] U. Baltaeva, “Solvability of the analogs of the problem Tricomi for the mixed type loaded equations with parabolic hyperbolic operators”, Boundary Value Problems, 2014, no. 211, 1–12 | MR

[10] S. Z. Dzhamalov, R. R. Ashurov, “On a nonlocal boundary-value problem for second kind second-order mixed type loaded equation in a rectangle”, Uzbek Mathematical Journal, 2018, no. 3, 63–72 | DOI | MR | Zbl

[11] T. D. Dzhuraev, Boundary-value problems for equations of mixed and mixed-composite type, Fan, Tashkent, 1979, 240 pp. | MR

[12] N. M. Gynter, A. Sh. Gabibzade, “Study of a class of linear and nonlinear loaded integral equations with different parameters”, Scientific Notes of AzSU. Ser. phys., matem. and chem. sciences. Baku, 1958, no. 1, 41–59

[13] R. Hilfer, Applications of fractional calculus in physics, World Scientific Publishing Company, Singapore, 87–130 | MR | Zbl

[14] A. M. Ilyin, A. S. Kalashnikov, O. A. Oleinik, “Second order linear equations of parabolic type”, Russian Mathematical Surveys, 17:3 (1962), 3–141 | MR

[15] N. B. Islamov, “An analogue of the Bitsadze-Samarskii problem for a class of equations of parabolic-hyperbolic type of the second kind”, Ufa Mathematical Journal, 7:1 (2015), 31–45 | DOI | MR | Zbl

[16] B. I. Islomov, D. M. Kuryazov, “On a boundary value problem for a loaded second order equation”, Dokl. Academy of Sciences of the Republic of Uzbekistan, 1996, no. 1-2, 3–6 | MR

[17] B. I. Islomov, F. Zhuraev, “Local boundary value problems for a loaded parabolic-hyperbolic type equation degenerating inside a domain”, Ufa Mathematical Journal, 14:1 (2022), 41–56 | DOI | MR | Zbl

[18] B. Islomov, U. Baltaeva, “Boudanry value problems for a third-order loaded parabolic-hyperbolic type equation with variable coefficients”, Electronic Journal of Differential Equations, 2016, no. 221, 1–10 | MR

[19] B. I. Islomov, Zh. A. Kholbekov, “On a nonlocal boundary value problem for a loaded parabolic-hyperbolic equation with three lines of type change”, J. Samara State Tech. Univ. Ser. Phys. Math. Sciences, 25:3 (2021), 407–422 | Zbl

[20] B. I. Islomov, D. A. Nasirova, “Local boundary value problems for a degenerate loaded equation of parabolic hyperbolic type of the second kind”, Lobachevskii Journal of Mathematics, 43:12 (2023), 5259–5268 | MR

[21] M. T. Jenaliyev, M. I. Ramazanov, Loaded equations as perturbations of differential equations, Ilim, Almaty, 2010, 334 pp.

[22] M. T. Jenaliyev, M. I. Ramazanov, M. T. Kosmakova, Zh. M. Tuleutaeva, “On the solution to a two-dimensional heat conduction problem in a degenerate domain”, Eurasian Math. J., 11:3 (2020), 89–94 | DOI | MR | Zbl

[23] Zh. M. Kadirbayeva, “A numerical method for solving boundary value problem for essentially loaded differential equations”, Lobachevskii Journal of Mathematics, 42:3 (2021), 551–559 | DOI | MR | Zbl

[24] I. L. Karol, “On a boundary value problem for an equation of mixed elliptic-hyperbolic type”, Dokl. Academy of Sciences of the USSR, 88:2 (1953), 197–200 | MR | Zbl

[25] K. U. Khubiev, “Shift problems for a loaded hyperbolic-parabolic equation with a fractional diffusion operator”, Notes. Udmurt. University. Mathematics. Mechanics. Computer sciences, 28:1 (2018), 82–90 | MR | Zbl

[26] B. S. Kishin, O. Kh. Abdullaev, “About a problem for loaded parabolic-hyperbolic type equation with fractional derivatives”, International Journal of Differential Equations, 2016, 6 pp. | MR

[27] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North Holland Mathematics Studies, 204, Elsevier, Amsterdam, 2006, 523 pp. | MR | Zbl

[28] L. Lichtenstein, Vorlesungen uber einege klassen nichtlinear integralgleichungen und integraldifferential gleihungen nebst anwendungen, Springer, Berlin, 1931, 164 pp.

[29] A. I. Kozhanov, “On one non-linear loaded parabolic equation and the related parabolic equation”, Math. notes, 76:6 (2004), 840–853 | MR | Zbl

[30] N. K. Mamadaliyev, “O representations, solutions of the modified Cauchy problem”, Sib. Math. Journal of the Russian Academy of Sciences, 41:5 (2000), 1087–1097 | MR

[31] S. G. Mikhlin, Lectures on linear integral equations, Fizmatgiz, M., 1959, 232 pp. | MR

[32] A. M. Nakhushev, Fractional calculus and its applications, Fizmatlit, M., 2003, 272 pp. | Zbl

[33] A. M. Nakhushev, Equations of mathematical biology, Vyshaiya shkola, M., 1995, 301 pp. | Zbl

[34] A. M. Nakhushev, Loaded equations and their applications, Nauka, M., 2012, 232 pp.

[35] N. N. Nazarov, “On a new class of linear integral equations”, Proceedings of the Institute of Mathematics and Mechanics of the Academy of Sciences of the Uzbek SSR. Tashkent, 1948, no. 4, 77–106

[36] I. N. Parasidis, E. Providas, “An exact solution method for a class of nonlinear loaded difference equations with multipoint boundary conditions”, J. Differential Equations Appl., 24:10 (2018), 1649–1663 | DOI | MR | Zbl

[37] K. B. Sabitov, I. P. Egorova, “On the well-posedness of boundary value problems with periodicity conditions for a mixed-type equation of the second kind”, Vestn. Sam. state. tech. university. Ser. Phys. Math. Science, 23:3 (2019), 430–451 | Zbl

[38] K. B. Sabitov, A. Kh. Suleimanova, “The Dirichlet problem for an equation of mixed type with characteristic de generation in a rectangular domain”, Izv. universities. Mathematics, 2009, no. 11, 43–52 | MR | Zbl

[39] Yu. K. Sabitova, “The Dirichlet problem for the Lavrentiev-Bitsadze equation with loaded terms”, Isv. Universities. Mathematics, 2018, no. 9, 42–58 | MR | Zbl

[40] K. M. Shinaliyev, B. Kh. Turmetov, S. R. Umarov, “A fractional operator algorithm method for construction of solutions of fractional order differential equations”, Fract. Calc. Appl. Anal, 15:2 (2012), 267–281 | DOI | MR | Zbl

[41] M. S. Salakhitdinov, Equations of mixed composite type, Fan, Tashkent, 1974, 156 pp. | MR

[42] M. S. Salakhitdinov, N. B. Islamov, “Nonlocal boundary value problem with the Bitsadze-Samarsky condition for an equation of parabolic-hyperbolic type of the second kind”, News of universities. Mathematics. Russia, 2015, no. 6, 43–52 | MR | Zbl

[43] M. Kh. Shkhanukov, “On some boundary value problems for a third-order equation that arise in modeling fluid filtration in porous media”, Differential Equations, 18:4 (1982), 689–699 | MR | Zbl

[44] M. M. Smirnov, Mixed type equations, M., 1985, 304 pp. | MR

[45] J. Wiener, L. Debnath, “A survey of partial differential equations with piecewise continuous arguments”, Internet J. Math. and Math. Scz, 18:2 (1995), 209–228 | DOI | MR | Zbl

[46] T. K. Yuldashev, B. I. Islomov, A. A. Abdullaev, “On solvability of a Poincare-Tricomi type problem for an elliptic-hyperbolic equation of the second kind”, Lobachevskii Journal of Mathematics, 42:3 (2021), 663–675 | DOI | MR | Zbl