Boundedness of the generalized Riemann--Liouville operator in local Morrey-type spaces
Eurasian mathematical journal, Tome 14 (2023) no. 4, pp. 63-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

The objective of this paper is to establish the boundedness of the generalized multi-dimensional Riemann-Liouville integral operator from one local Morrey-type space to another one under some conditions on numerical parameters $p$ and $q$.
@article{EMJ_2023_14_4_a5,
     author = {M. A. Senouci},
     title = {Boundedness of the generalized {Riemann--Liouville} operator in local {Morrey-type} spaces},
     journal = {Eurasian mathematical journal},
     pages = {63--68},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2023_14_4_a5/}
}
TY  - JOUR
AU  - M. A. Senouci
TI  - Boundedness of the generalized Riemann--Liouville operator in local Morrey-type spaces
JO  - Eurasian mathematical journal
PY  - 2023
SP  - 63
EP  - 68
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2023_14_4_a5/
LA  - en
ID  - EMJ_2023_14_4_a5
ER  - 
%0 Journal Article
%A M. A. Senouci
%T Boundedness of the generalized Riemann--Liouville operator in local Morrey-type spaces
%J Eurasian mathematical journal
%D 2023
%P 63-68
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2023_14_4_a5/
%G en
%F EMJ_2023_14_4_a5
M. A. Senouci. Boundedness of the generalized Riemann--Liouville operator in local Morrey-type spaces. Eurasian mathematical journal, Tome 14 (2023) no. 4, pp. 63-68. http://geodesic.mathdoc.fr/item/EMJ_2023_14_4_a5/

[1] V. I. Burenkov, “Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces. I”, Eurasian Math. J., 3:3 (2012), 11–32 | MR | Zbl

[2] V. I. Burenkov, “Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces. II”, Eurasian Math. J., 4:1 (2013), 21–45 | MR | Zbl

[3] V. I. Burenkov, H. V. Guliyev, V. S. Guliyev, “Necessary and sufficient conditions for the boundedness of fractional maximal operators in local Morrey-type spaces”, J. Comput. Appl. Math., 208 (2007), 280–301 | DOI | MR | Zbl

[4] V. I. Burenkov, V. S. Guliyev, T. V. Tararykova, “Comparison of Morrey spaces and Nikol'skii spaces”, Eurasian Math. J., 12:1 (2021), 9–20 | DOI | MR | Zbl

[5] V. I. Burenkov, T. V. Tararykova, “Young's inequality for convolutions in Morrey-type spaces”, Eurasian Math. J., 7:2 (2016), 92–99 | MR | Zbl

[6] U. N. Katugampola, “Approach to a generalized fractional integral”, Applied Mathematicsand Computation, 218:3 (2011), 860–865 | DOI | MR | Zbl

[7] C. B. Morrey, “On the solutions of quasi-linear elliptic partial differential equations”, Amer. Math. Soc., 43 (1938), 126–166 | DOI | MR | Zbl

[8] M. A. Senouci, “Boundedness of Riemann-Liouville fractional integral operator in Morrey spaces”, Eurasian Math. J., 12:1 (2021), 82–91 | DOI | MR | Zbl

[9] Z. Fu., J. Trujillo, Q. Wu, “Riemann-Liouville fractional calculus in Morrey spaces and applications”, Math. Appl., 2016 | DOI

[10] H. Yildirim, Z. Kirtay, “Ostrowski inequality for generalized fractional integral and related inequalities”, Malaya Journal of Matematik, 2:3 (2014), 322–329 | DOI | Zbl