Two–dimensional bilinear inequality for rectangular Hardy operator and non–factorizable weights
Eurasian mathematical journal, Tome 14 (2023) no. 4, pp. 47-62 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Necessary conditions and sufficient conditions are given for the validity of two–dimensional bilinear norm inequalities with rectangular Hardy operators in weighted Lebesgue spaces. The results are applicable for non–factorizable weights.
@article{EMJ_2023_14_4_a4,
     author = {R. Sengupta and E. P. Ushakova},
     title = {Two{\cyrv}{\CYRDJE}{\textquotedblleft}dimensional bilinear inequality for rectangular {Hardy} operator and {non{\cyrv}{\CYRDJE}{\textquotedblleft}factorizable} weights},
     journal = {Eurasian mathematical journal},
     pages = {47--62},
     year = {2023},
     volume = {14},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2023_14_4_a4/}
}
TY  - JOUR
AU  - R. Sengupta
AU  - E. P. Ushakova
TI  - Two–dimensional bilinear inequality for rectangular Hardy operator and non–factorizable weights
JO  - Eurasian mathematical journal
PY  - 2023
SP  - 47
EP  - 62
VL  - 14
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/EMJ_2023_14_4_a4/
LA  - en
ID  - EMJ_2023_14_4_a4
ER  - 
%0 Journal Article
%A R. Sengupta
%A E. P. Ushakova
%T Two–dimensional bilinear inequality for rectangular Hardy operator and non–factorizable weights
%J Eurasian mathematical journal
%D 2023
%P 47-62
%V 14
%N 4
%U http://geodesic.mathdoc.fr/item/EMJ_2023_14_4_a4/
%G en
%F EMJ_2023_14_4_a4
R. Sengupta; E. P. Ushakova. Two–dimensional bilinear inequality for rectangular Hardy operator and non–factorizable weights. Eurasian mathematical journal, Tome 14 (2023) no. 4, pp. 47-62. http://geodesic.mathdoc.fr/item/EMJ_2023_14_4_a4/

[1] M. I. Aguilar Cañestro, P. Ortega Salvador, C. Ramirez Torreblanca, “Weighted bilinear Hardy inequalities”, J. Math. Anal. Appl., 387:1 (2012), 320–334 | DOI | MR | Zbl

[2] N. Bigicli, R. Ch. Mustafayev, T. Ünver, “Multidimensional bilinear Hardy ineualities”, Azerbaijan J. Math., 10:1 (2020), 127–161 | MR

[3] M. Cwikel, R. Kerman, “Positive multilinear operators acting on weighted $L_p$ spaces”, J. Funct. Anal., 106:1 (1992), 130–144 | DOI | MR | Zbl

[4] L. Grafakos, R. H. Torres, “A multilinear Schur test and multiplier operators”, J. Funct. Anal., 187:1 (2001), 1–24 | DOI | MR | Zbl

[5] P. Jain, S. Jain, V. D. Stepanov, “LCT based integral transforms and Hausdorff operators”, Eurasian Math. J., 11:1 (2020), 57–71 | DOI | MR | Zbl

[6] P. Jain, S. Kanjilal, V. D. Stepanov, E. P. Ushakova, “On bilinear Hardy-Steklov operators”, Dokl. Math., 98 (2018), 634–637 | DOI | MR | Zbl

[7] P. Jain, S. Kanjilal, V. D. Stepanov, E. P. Ushakova, “Bilinear Hardy-Steklov operators”, Math. Notes, 104:6 (2018), 823–832 | DOI | MR

[8] A. Kalybay, R. Oinarov, “Boundedness of Riemann-Liouville operator from weighted Sobolev space to weighted Lebesgue space”, Eurasian Math. J., 12:1 (2021), 39–48 | DOI | MR | Zbl

[9] M. Křepela, “Iteration bilinear Hardy inequalities”, Proc. Edinb. Math. Soc. Ser. 2, 60:6 (2017), 823–832 | MR

[10] M. Křepela, “Bilinear weighted Hardy inequality for nonincreasing functions”, Publ. Mat., 61 (2017), 3–50 | DOI | MR

[11] D. V. Prokhorov, “On a class of weighted inequalities containing quasilinear operators”, Proc. Steklov Inst. Math., 293 (2016), 272–287 | DOI | MR | Zbl

[12] E. Sawyer, “Weighted inequalities for two-dimensional Hardy operator”, Studia Math., 82:1 (1985), 1–16 | DOI | MR | Zbl

[13] A. Skripka, A. Tomskova, Multilinear operator integrals, Lecture Notes in Mathematics, 2250, Springer-Verlag, Berlin, 2019 | DOI | MR | Zbl

[14] V. D. Stepanov, G. E. Shambilova, “Reduction of weighted bilinear inequalities with integration operators on the cone of nondecreasing functions”, Sib. Math. J., 59 (2018), 505–522 | DOI | MR | Zbl

[15] V. D. Stepanov, G. E. Shambilova, “On iterated and bilinear integral Hardy-type operators”, Math. Inequal. Appl., 22:4 (2019), 1505–1533 | MR | Zbl

[16] V. D. Stepanov, G. E. Shambilova, “On two-dimensional bilinear inequalities with rectangular Hardy operators in weighted Lebesgue spaces”, Proc. Steklov Inst. Math., 312 (2021), 241–248 | DOI | MR | Zbl

[17] V. D. Stepanov, E. P. Ushakova, “Bilinear Hardy-type inequalities in weighted Lebesgue spaces”, Nonlinear Studies, 26:4 (2019), 939–953 | MR | Zbl

[18] V. D. Stepanov, E. P. Ushakova, “On weighted Hardy inequality with two-dimensional rectangular operator — extension of the E. Sawyer theorem”, Math. Inequal. Appl., 24:3 (2021), 617–634 | MR | Zbl

[19] V. D. Stepanov, E. P. Ushakova, “On the boundedness and compactness of the two-dimensional rectangular Hardy operator”, Doklady Math., 106:2 (2022), 361–365 | DOI | MR | Zbl

[20] V. D. Stepanov, E. P. Ushakova, “Weighted Hardy inequality with two-dimensional rectangular operator: the case $q

$”, Math. Inequal. Appl., 26:1 (2023), 267–288 | MR | Zbl

[21] A. M. Temirkhanova, A. T. Beszhanova, “Boundedness and compactness of a certain class of matrix operators with variable limits of summation”, Eurasian Math. J., 11:4 (2020), 66–75 | DOI | MR | Zbl