Two–dimensional bilinear inequality for rectangular Hardy operator and non–factorizable weights
Eurasian mathematical journal, Tome 14 (2023) no. 4, pp. 47-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

Necessary conditions and sufficient conditions are given for the validity of two–dimensional bilinear norm inequalities with rectangular Hardy operators in weighted Lebesgue spaces. The results are applicable for non–factorizable weights.
@article{EMJ_2023_14_4_a4,
     author = {R. Sengupta and E. P. Ushakova},
     title = {Two{\textendash}dimensional bilinear inequality for rectangular {Hardy} operator and non{\textendash}factorizable weights},
     journal = {Eurasian mathematical journal},
     pages = {47--62},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2023_14_4_a4/}
}
TY  - JOUR
AU  - R. Sengupta
AU  - E. P. Ushakova
TI  - Two–dimensional bilinear inequality for rectangular Hardy operator and non–factorizable weights
JO  - Eurasian mathematical journal
PY  - 2023
SP  - 47
EP  - 62
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2023_14_4_a4/
LA  - en
ID  - EMJ_2023_14_4_a4
ER  - 
%0 Journal Article
%A R. Sengupta
%A E. P. Ushakova
%T Two–dimensional bilinear inequality for rectangular Hardy operator and non–factorizable weights
%J Eurasian mathematical journal
%D 2023
%P 47-62
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2023_14_4_a4/
%G en
%F EMJ_2023_14_4_a4
R. Sengupta; E. P. Ushakova. Two–dimensional bilinear inequality for rectangular Hardy operator and non–factorizable weights. Eurasian mathematical journal, Tome 14 (2023) no. 4, pp. 47-62. http://geodesic.mathdoc.fr/item/EMJ_2023_14_4_a4/

[1] M. I. Aguilar Cañestro, P. Ortega Salvador, C. Ramirez Torreblanca, “Weighted bilinear Hardy inequalities”, J. Math. Anal. Appl., 387:1 (2012), 320–334 | DOI | MR | Zbl

[2] N. Bigicli, R. Ch. Mustafayev, T. Ünver, “Multidimensional bilinear Hardy ineualities”, Azerbaijan J. Math., 10:1 (2020), 127–161 | MR

[3] M. Cwikel, R. Kerman, “Positive multilinear operators acting on weighted $L_p$ spaces”, J. Funct. Anal., 106:1 (1992), 130–144 | DOI | MR | Zbl

[4] L. Grafakos, R. H. Torres, “A multilinear Schur test and multiplier operators”, J. Funct. Anal., 187:1 (2001), 1–24 | DOI | MR | Zbl

[5] P. Jain, S. Jain, V. D. Stepanov, “LCT based integral transforms and Hausdorff operators”, Eurasian Math. J., 11:1 (2020), 57–71 | DOI | MR | Zbl

[6] P. Jain, S. Kanjilal, V. D. Stepanov, E. P. Ushakova, “On bilinear Hardy-Steklov operators”, Dokl. Math., 98 (2018), 634–637 | DOI | MR | Zbl

[7] P. Jain, S. Kanjilal, V. D. Stepanov, E. P. Ushakova, “Bilinear Hardy-Steklov operators”, Math. Notes, 104:6 (2018), 823–832 | DOI | MR

[8] A. Kalybay, R. Oinarov, “Boundedness of Riemann-Liouville operator from weighted Sobolev space to weighted Lebesgue space”, Eurasian Math. J., 12:1 (2021), 39–48 | DOI | MR | Zbl

[9] M. Křepela, “Iteration bilinear Hardy inequalities”, Proc. Edinb. Math. Soc. Ser. 2, 60:6 (2017), 823–832 | MR

[10] M. Křepela, “Bilinear weighted Hardy inequality for nonincreasing functions”, Publ. Mat., 61 (2017), 3–50 | DOI | MR

[11] D. V. Prokhorov, “On a class of weighted inequalities containing quasilinear operators”, Proc. Steklov Inst. Math., 293 (2016), 272–287 | DOI | MR | Zbl

[12] E. Sawyer, “Weighted inequalities for two-dimensional Hardy operator”, Studia Math., 82:1 (1985), 1–16 | DOI | MR | Zbl

[13] A. Skripka, A. Tomskova, Multilinear operator integrals, Lecture Notes in Mathematics, 2250, Springer-Verlag, Berlin, 2019 | DOI | MR | Zbl

[14] V. D. Stepanov, G. E. Shambilova, “Reduction of weighted bilinear inequalities with integration operators on the cone of nondecreasing functions”, Sib. Math. J., 59 (2018), 505–522 | DOI | MR | Zbl

[15] V. D. Stepanov, G. E. Shambilova, “On iterated and bilinear integral Hardy-type operators”, Math. Inequal. Appl., 22:4 (2019), 1505–1533 | MR | Zbl

[16] V. D. Stepanov, G. E. Shambilova, “On two-dimensional bilinear inequalities with rectangular Hardy operators in weighted Lebesgue spaces”, Proc. Steklov Inst. Math., 312 (2021), 241–248 | DOI | MR | Zbl

[17] V. D. Stepanov, E. P. Ushakova, “Bilinear Hardy-type inequalities in weighted Lebesgue spaces”, Nonlinear Studies, 26:4 (2019), 939–953 | MR | Zbl

[18] V. D. Stepanov, E. P. Ushakova, “On weighted Hardy inequality with two-dimensional rectangular operator — extension of the E. Sawyer theorem”, Math. Inequal. Appl., 24:3 (2021), 617–634 | MR | Zbl

[19] V. D. Stepanov, E. P. Ushakova, “On the boundedness and compactness of the two-dimensional rectangular Hardy operator”, Doklady Math., 106:2 (2022), 361–365 | DOI | MR | Zbl

[20] V. D. Stepanov, E. P. Ushakova, “Weighted Hardy inequality with two-dimensional rectangular operator: the case $q

$”, Math. Inequal. Appl., 26:1 (2023), 267–288 | MR | Zbl

[21] A. M. Temirkhanova, A. T. Beszhanova, “Boundedness and compactness of a certain class of matrix operators with variable limits of summation”, Eurasian Math. J., 11:4 (2020), 66–75 | DOI | MR | Zbl