Equivalent semi-norms for Nikol'skii--Besov spaces
Eurasian mathematical journal, Tome 14 (2023) no. 4, pp. 15-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of this paper is to establish the equivalence of various semi-norms involving differences for Nikol'skii–Besov spaces on an interval.
@article{EMJ_2023_14_4_a2,
     author = {V. I. Burenkov and A. Senouci},
     title = {Equivalent semi-norms for {Nikol'skii--Besov} spaces},
     journal = {Eurasian mathematical journal},
     pages = {15--22},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2023_14_4_a2/}
}
TY  - JOUR
AU  - V. I. Burenkov
AU  - A. Senouci
TI  - Equivalent semi-norms for Nikol'skii--Besov spaces
JO  - Eurasian mathematical journal
PY  - 2023
SP  - 15
EP  - 22
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2023_14_4_a2/
LA  - en
ID  - EMJ_2023_14_4_a2
ER  - 
%0 Journal Article
%A V. I. Burenkov
%A A. Senouci
%T Equivalent semi-norms for Nikol'skii--Besov spaces
%J Eurasian mathematical journal
%D 2023
%P 15-22
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2023_14_4_a2/
%G en
%F EMJ_2023_14_4_a2
V. I. Burenkov; A. Senouci. Equivalent semi-norms for Nikol'skii--Besov spaces. Eurasian mathematical journal, Tome 14 (2023) no. 4, pp. 15-22. http://geodesic.mathdoc.fr/item/EMJ_2023_14_4_a2/

[1] O. V. Besov, V. P. IL'in, S. M. Nikol'skii, Integral representations of functions and embedding theorems, 1st Edition, Nauka, M., 1975 (in Russian) ; English transl. of 1st edition v. 1,2, Wiley, Chichester, 1979 ; 2nd Edition, Nauka, M., 1996 (in Russian) | MR | Zbl | Zbl

[2] V. I. Burenkov, “Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces. I”, Eurasian Math. J., 3:3 (2012), 11–32 | MR | Zbl

[3] V. I. Burenkov, “Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces. II”, Eurasian Math. J., 4:1 (2013), 21–45 | MR | Zbl

[4] V. I. Burenkov, V. S. Guliyev, T. V. Tararykova, “Comparison of Morrey spaces and Nikol'skii spaces”, Eurasian Math. J., 12:1 (2021), 9–20 | DOI | MR | Zbl

[5] V. I. Burenkov, A. Senouci, “On integral inequalities involving differences”, Journal of computational and applied mathematics, 171 (2004), 141–149 | DOI | MR | Zbl

[6] G. A. Kalyabin, “On functions with differences from $L_{p(0,1)}$”, Dokl. Math., 91 (2015), 163–166 | DOI | MR | Zbl

[7] 1st Edition, Springer, 1975 | MR | Zbl

[8] W. Sickel, “Smoothness spaces related to Morrey spaces a survey. I”, Eurasian Math. J., 3:3 (2012), 110–149 | MR | Zbl

[9] W. Sickel, “Smoothness spaces related to Morrey spaces a survey. II”, Eurasian Math. J., 4:1 (2013), 82–124 | MR | Zbl

[10] G. Sinnamon, “An inequality for first-order differences”, Journal of function spaces and applications, 3:2 (2005), 117–124 | DOI | MR | Zbl