Classes of kernels and continuity properties of the tangential gradient of an integral operator in H\"older spaces on a manifold
Eurasian mathematical journal, Tome 14 (2023) no. 3, pp. 54-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove multiplication and embedding theorems for classes of kernels of integral operators in subsets of metric spaces with a measure. Then we prove a tangential differentiation theorem with respect to a semi-tangent vector for integral operators that are defined on an upper-Ahlfors regular subset of the Euclidean space and a continuity theorem for the corresponding integral operator in Hölder spaces in the specific case of a differentiable manifold.
@article{EMJ_2023_14_3_a3,
     author = {M. Lanza de Cristoforis},
     title = {Classes of kernels and continuity properties of the tangential gradient of an integral operator in {H\"older} spaces on a manifold},
     journal = {Eurasian mathematical journal},
     pages = {54--74},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2023_14_3_a3/}
}
TY  - JOUR
AU  - M. Lanza de Cristoforis
TI  - Classes of kernels and continuity properties of the tangential gradient of an integral operator in H\"older spaces on a manifold
JO  - Eurasian mathematical journal
PY  - 2023
SP  - 54
EP  - 74
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2023_14_3_a3/
LA  - en
ID  - EMJ_2023_14_3_a3
ER  - 
%0 Journal Article
%A M. Lanza de Cristoforis
%T Classes of kernels and continuity properties of the tangential gradient of an integral operator in H\"older spaces on a manifold
%J Eurasian mathematical journal
%D 2023
%P 54-74
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2023_14_3_a3/
%G en
%F EMJ_2023_14_3_a3
M. Lanza de Cristoforis. Classes of kernels and continuity properties of the tangential gradient of an integral operator in H\"older spaces on a manifold. Eurasian mathematical journal, Tome 14 (2023) no. 3, pp. 54-74. http://geodesic.mathdoc.fr/item/EMJ_2023_14_3_a3/

[1] J. E. Bjork, “On extensions of Lipschitz functions”, Ark. Mat, 7 (1969), 513–515

[2] I. Chavel, “Eigenvalues in Riemannian geometry”, Including a chapter by Burton Randol. With an appendix by Jozef Dodziuk, Pure and Applied Mathematics, 115, Academic Press, Inc., Orlando, FL, 1984

[3] D. Colton, R. Kress, Integral equation methods in scattering theory, Wiley, New York, 1983

[4] M. Dalla Riva, M. Lanza de Cristoforis, P. Musolino, Singularly perturbed boundary value problems. A functional analytic approach, Springer, Cham, 2021

[5] F. Dondi, M. Lanza de Cristoforis, “Regularizing properties of the double layer potential of second order elliptic differential operators”, Mem. Differ. Equ. Math. Phys, 71 (2017), 69–110

[6] J. Garcia-Cuerva, A. E. Gatto, “Boundedness properties of fractional integral operators associated to non-doubling measures”, Studia Math., 162:3 (2004), 245–261

[7] J. Garcia-Cuerva, A. E. Gatto, “Lipschitz spaces and Calderon-Zygmund operators associated to non-doubling measures”, Publ. Mat, 49:2 (2005), 285–296

[8] A. E. Gatto, “Boundedness on inhomogeneous Lipschitz spaces of fractional integrals singular integrals and hyper singular integrals associated to non-doubling measures”, Collect. Math., 60:1 (2009), 101–114

[9] T. G. Gegelia, “Certain special classes of functions and their properties”, Sakharth. SSR Mecn. Akad. Math. Inst. Srom, 32 (1967), 94–139 (Russian)

[10] G. Giraud, “Equations à integrales principales;etude suivie d'une application”, Ann. Sci. Ecole Norm. Sup, 51 (1934), 251–372 (French)

[11] A. Kirsch, F. Hettlich, The mathematical theory of time-harmonic Maxwell's equations; expansion-, integral-, and variational methods, Springer, 2015

[12] A. Kufner, O. John, S. Fucik, Function spaces, Noordhoff International Publishing, 1977

[13] V. D. Kupradze, T. G. Gegelia, M. O. Basheleishvili, T. V. Burchuladze, Three-dimensional problems of the math ematical theory of elasticity and thermoelasticity, North-Holland Publ Co., Amsterdam, 1979

[14] M. Lanza de Cristoforis, “An inequality for H?older continuous functions generalizing a result of Carlo Miranda”, Computational and Analytic Methods in Science and Engineering, ed. C. Constanda, Birkhauser/Springer, New York, 2020, 185–206

[15] M. Lanza de Cristoforis, “Integral operators in H?older spaces on upper Ahlfors regular sets”, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl, 34 (2023), 195–234

[16] E. J. Mc Shane, “Extensions of the range of functions”, Bull. Am. Math. Soc, 40 (1934), 837–842