Classes of kernels and continuity properties of the tangential gradient of an integral operator in H\"older spaces on a manifold
Eurasian mathematical journal, Tome 14 (2023) no. 3, pp. 54-74

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove multiplication and embedding theorems for classes of kernels of integral operators in subsets of metric spaces with a measure. Then we prove a tangential differentiation theorem with respect to a semi-tangent vector for integral operators that are defined on an upper-Ahlfors regular subset of the Euclidean space and a continuity theorem for the corresponding integral operator in Hölder spaces in the specific case of a differentiable manifold.
@article{EMJ_2023_14_3_a3,
     author = {M. Lanza de Cristoforis},
     title = {Classes of kernels and continuity properties of the tangential gradient of an integral operator in {H\"older} spaces on a manifold},
     journal = {Eurasian mathematical journal},
     pages = {54--74},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2023_14_3_a3/}
}
TY  - JOUR
AU  - M. Lanza de Cristoforis
TI  - Classes of kernels and continuity properties of the tangential gradient of an integral operator in H\"older spaces on a manifold
JO  - Eurasian mathematical journal
PY  - 2023
SP  - 54
EP  - 74
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2023_14_3_a3/
LA  - en
ID  - EMJ_2023_14_3_a3
ER  - 
%0 Journal Article
%A M. Lanza de Cristoforis
%T Classes of kernels and continuity properties of the tangential gradient of an integral operator in H\"older spaces on a manifold
%J Eurasian mathematical journal
%D 2023
%P 54-74
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2023_14_3_a3/
%G en
%F EMJ_2023_14_3_a3
M. Lanza de Cristoforis. Classes of kernels and continuity properties of the tangential gradient of an integral operator in H\"older spaces on a manifold. Eurasian mathematical journal, Tome 14 (2023) no. 3, pp. 54-74. http://geodesic.mathdoc.fr/item/EMJ_2023_14_3_a3/