Hardy inequalities for $p$-weakly monotone functions
Eurasian mathematical journal, Tome 14 (2023) no. 2, pp. 94-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove Hardy-type inequalities $$ \left(\int_d^\infty\left|\int_d^s f(x)dx\right|^p s^\beta ds\right)^{1/p}\leqslant C\left(\int_d^\infty|f(s)|^qs^\alpha ds\right)^{1/q} $$ for the class of $p$-weakly monotone functions with $q$ or $p$ smaller than $1$ and $d\geqslant 0$.
@article{EMJ_2023_14_2_a5,
     author = {M. Saucedo},
     title = {Hardy inequalities for $p$-weakly monotone functions},
     journal = {Eurasian mathematical journal},
     pages = {94--106},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2023_14_2_a5/}
}
TY  - JOUR
AU  - M. Saucedo
TI  - Hardy inequalities for $p$-weakly monotone functions
JO  - Eurasian mathematical journal
PY  - 2023
SP  - 94
EP  - 106
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2023_14_2_a5/
LA  - en
ID  - EMJ_2023_14_2_a5
ER  - 
%0 Journal Article
%A M. Saucedo
%T Hardy inequalities for $p$-weakly monotone functions
%J Eurasian mathematical journal
%D 2023
%P 94-106
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2023_14_2_a5/
%G en
%F EMJ_2023_14_2_a5
M. Saucedo. Hardy inequalities for $p$-weakly monotone functions. Eurasian mathematical journal, Tome 14 (2023) no. 2, pp. 94-106. http://geodesic.mathdoc.fr/item/EMJ_2023_14_2_a5/

[1] N. Azzouz, B. Halim, A. Senouci, “An inequality for the weighted Hardy operator for $0 p 1$”, Eurasian Math. J., 4:3 (2013), 127–131 | MR | Zbl

[2] N. Azzouz, A. Senouci, “Hardy type inequality with sharp constant for $0 p 1$”, Eurasian Math. J., 10:1 (2019), 52–58 | DOI | MR | Zbl

[3] A. Belov, M. Dyachenko, S. Tikhonov, “Functions with general monotone Fourier coefficients”, Uspekhi Mat. Nauk, 76:6 (2021), 3–70 | DOI | MR | Zbl

[4] B. Booton, “General monotone sequences and trigonometric series”, Math. Nachryu, 87:5-6 (2014), 518–529 | DOI | MR

[5] J. Bradley, “Hardy Inequalities with mixed norms”, Canad. Math. Bullyu, 21:6 (1978), 405–408 | DOI | MR | Zbl

[6] V. Burenkov, “On the exact constant in the Hardy inequality with $0 p 1$ for monotone functions”, Proc. Steklov Inst. Mat., 194:4 (1993), 59–63 | MR

[7] A. Debernardi, “Hankel transforms of general monotone functions”, Topics in Classical and Modern Analysis. Applied and Numerical Harmonic Analysis, Birkhäuser, 2019, 87–104 | MR

[8] A. Debernardi, “The Boas problem on Hankel transforms”, J. Fourier Anal. Appl., 25:6 (2019), 3310–3341 | DOI | MR | Zbl

[9] O. Domínguez, D. Haroske, S. Tikhonov, “Embeddings and characterizations of Lipschitz spaces”, J. Math. Pures Appl., 144 (2020), 69–105 | DOI | MR | Zbl

[10] O. Domínguez, S. Tikhonov, “Function spaces of logarithmic smoothness: embeddings and characterizations”, Mem. Amer. Math. Soc., 282, no. 1393, 2023, 170 | MR

[11] M. Dyachenko, A. Mukanov, S. Tikhonov, “Smoothness of functions and Fourier coefficients”, Math. Sbornik, 210:7 (2019), 994–1018 | DOI | MR | Zbl

[12] M. Dyachenko, S. Tikhonov, “Convergence of trigonometric series with general monotone coefficients”, C. R. Math. Acad. Sci. Paris, 345:3 (2007), 123–126 | DOI | MR | Zbl

[13] M. Dyachenko, S. Tikhonov, “General monotone sequences and convergence of trigonometric series”, Topics in classical analysis and applications in honor of Daniel Waterman, World Scientific, 2008, 88–101 | MR | Zbl

[14] M. Dyachenko, S. Tikhonov, “Integrability and continuity of functions represented by trigonometric series: coefficients criteria”, Studia Math., 193:3 (2009), 285–306 | DOI | MR | Zbl

[15] M. Dyachenko, S. Tikhonov, “Smoothness and asymptotic properties of functions with general monotone Fourier coefficients”, J. Fourier Anal. Appl., 24:4 (2018), 1072–1097 | DOI | MR | Zbl

[16] L. Feng, V. Totik, S. Zhou, “Trigonometric series with a generalized monotonicity condition”, Acta Math. Sin. Eng. Ser., 30:8 (2014), 1289–1296 | DOI | MR | Zbl

[17] D. Gorbachev, E. Liflyand, S. Tikhonov, “Weighted Fourier inequalities: Boas conjecture in $R^n$”, J. d'Analyse Math., 114:1 (2011), 99–120 | DOI | MR | Zbl

[18] S. Grigoriev, Y. Sagher, T. Savage, “General monotonicity and interpolation of operators”, J. Math. Anal. Appl., 435:2 (2016), 1296–1320 | DOI | MR | Zbl

[19] A. Jumabayeva, B. Simonov, “Liouville-Weyl derivatives of double trigonometric series”, Topics in Classical and Modern Analysis. Applied and Numerical Harmonic Analysis, Birkhäuser, 2019, 159–182 | MR

[20] A. Jumabayeva, B. Simonov, “Transformed Fourier series by general monotone sequences”, Math. Notes, 107:5-6 (2020), 747–758 | DOI | MR

[21] A. Konyushkov, “Best approximation by trigonometric polynomials and Fourier coefficients”, Math. Sb., 44:1 (1958), 53–84 | MR

[22] A. Kopezhanova, E. Nursultanov, L. E. Persson, “On inequalities for the Fourier transform of functions from Lorentz spaces”, Math. Notes, 90:5-6 (2011), 785–788 | DOI | MR | Zbl

[23] P. Kórus, “Uniform convergence of double trigonometric integrals”, Colloq. Math., 154:1 (2018), 107–119 | DOI | MR | Zbl

[24] A. Kufner, L. E. Persson, Weighted inequalities of Hardy type, World Scientific, 2003 | MR | Zbl

[25] L. Leindler, “Inequalities of Hardy-Littlewood type”, Anal. Math., 2:2 (1976), 117–123 | DOI | MR | Zbl

[26] W. Lenski, B. Szal, “Applications of general monotone sequences to strong approximation by Fourier series”, Indag. Math., 25:1 (2014), 122–130 | DOI | MR | Zbl

[27] E. Liflyand, S. Tikhonov, “A concept of general monotonicity and applications”, Math. Nachr., 284:8-9 (2011), 1083–1098 | DOI | MR | Zbl

[28] E. Liflyand, S. Tikhonov, M. Zeltser, “Extending tests for convergence of number series”, J. Math. Anal. Appl., 377:1 (2011), 194–206 | DOI | MR | Zbl

[29] B. Opic, A. Kufner, Hardy-type inequalities, Pitman Research Notes in Mathematics Series, Longman Scientific Technical, 1990 | MR | Zbl

[30] S. Tikhonov, “Trigonometric series with general monotone coefficients”, J. Math. Anal. Appl., 326:1 (2007), 721–735 | DOI | MR | Zbl

[31] S. Tikhonov, “Best approximation and moduli of smoothness: computation and equivalence theorems”, J. Approx. Theory, 153:1 (2008), 19–39 | DOI | MR | Zbl