Hardy inequalities for $p$-weakly monotone functions
Eurasian mathematical journal, Tome 14 (2023) no. 2, pp. 94-106

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove Hardy-type inequalities $$ \left(\int_d^\infty\left|\int_d^s f(x)dx\right|^p s^\beta ds\right)^{1/p}\leqslant C\left(\int_d^\infty|f(s)|^qs^\alpha ds\right)^{1/q} $$ for the class of $p$-weakly monotone functions with $q$ or $p$ smaller than $1$ and $d\geqslant 0$.
@article{EMJ_2023_14_2_a5,
     author = {M. Saucedo},
     title = {Hardy inequalities for $p$-weakly monotone functions},
     journal = {Eurasian mathematical journal},
     pages = {94--106},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EMJ_2023_14_2_a5/}
}
TY  - JOUR
AU  - M. Saucedo
TI  - Hardy inequalities for $p$-weakly monotone functions
JO  - Eurasian mathematical journal
PY  - 2023
SP  - 94
EP  - 106
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EMJ_2023_14_2_a5/
LA  - en
ID  - EMJ_2023_14_2_a5
ER  - 
%0 Journal Article
%A M. Saucedo
%T Hardy inequalities for $p$-weakly monotone functions
%J Eurasian mathematical journal
%D 2023
%P 94-106
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EMJ_2023_14_2_a5/
%G en
%F EMJ_2023_14_2_a5
M. Saucedo. Hardy inequalities for $p$-weakly monotone functions. Eurasian mathematical journal, Tome 14 (2023) no. 2, pp. 94-106. http://geodesic.mathdoc.fr/item/EMJ_2023_14_2_a5/